Biomechanics III (FSI-RBM-A)

Academic year 2018/2019
Supervisor: prof. Ing. Jiří Burša, Ph.D.  
Supervising institute: ÚMTMB all courses guaranted by this institute
Teaching language: English
Aims of the course unit:
The aim of the course is to provide basic general knowledge about properties of cardiovascular system elements and implants, especially about those important for mechanics. Students are made familiar with modelling of mechanical behaviour of these elements at the level corresponding to the actual state of science and to the possibilities of existing hardware and software. They get familiar with implants applied in the cardio-vascular system and principals of their design.
Learning outcomes and competences:
Students will have a clear idea of basic biomechanical problems of cardiovascular system and of the implants used in it. They will be able to model these problems at the actual level of scientific knowledge and of technological equipment. In this way they learn computational modelling of many material properties being important at up-to-date materials used in technology (anisotropy, viscoelasticity, hyperelasticity).
Prerequisites:
Knowledge of basic terms of theory of elasticity and selected theories in the range of the course 5PP-A (stress, strain, general Hooke's law, membrane theory of shells, thick-wall cylindrical vessel). Description of mechanical properties of materials under large strains using hyperelastic constitutive models including anisotropic ones. Basic properties of Newtonian liquids (viscosity), theory of linear viscoelasticity. Fundamentals of FEM and basic handling of ANSYS system.
Course contents:
The course is aimed at getting acquainted with the structure of cardio-vascular system, the properties of its elements and with possible ways of solving biomechanical problems by modelling, computational modelling in particular. It offers an overview of these properties and an analysis of their importance from the point of view of solutions of various biomechanical problems. In more detail it deals with computational modelling of specific material properties, which are typical for soft tissues (viscoelasticity, hyperelasticity, anisotropy, material non-linearity), and with practical exploitation of the potentials of the FEM program system ANSYS and analysis of its limitations in solving biomechanical problems. An overview of basic reological properties of blood is presented as well. Further, man-made replacements used in cardio-vascular surgery are dealt with (artificial cardiac pumps, heart valves, arterial stents, vascular grafts); their construction principles, basic requirements of biocompatibility, possibilities of their quantitative assessment and improving their properties are discussed, as well as problems of their lifetime.
Teaching methods and criteria:
The course is taught through lectures explaining the basic principles and theory of the discipline. Fundamentals of anatomy, physiology and pathology of cardiovascular system are presented by an external medical lecturer (Mgr. MUDr. Michaela Vojnová Řebíčková). Seminars are focused on practical exercising of the topics presented in lectures.
Assesment methods and criteria linked to learning outcomes:
Active participation in seminars, final project, test of basic knowledge.
Controlled participation in lessons:
Participation in seminars is required. An apologized absence can be compensed by individual projects controlled by the tutor.
Type of course unit:
    Lecture  13 × 2 hrs. optionally                  
    Computer-assisted exercise  13 × 1 hrs. compulsory                  
Course curriculum:
    Lecture 1.Introduction, contents of the course, mechanical properties of arteries and their experimental evaluation.
2. Definition of cardio-vascular system, fundamentals of its anatomy.
3. Fundamentals of physiological processes in heart and blood vessels, their interpretation.
4. Structure and rheological properties of blood, models of blood behaviour, velocity profiles of non-Newtonean liquids, Fahraeus-Lindqvist effect.
5. Structure and components of vascular and myocardial walls, mechanical properties of components.
6. Constitutive models of soft tissues, residual stresses in arteries.
7. Mechanical properties of smooth muscle cells and their computational modelling.
8. Mechanical influence on atherosclerotic processes, principals of treatments.
9. Arterial stents, principals of function, design and production.
10. Vascular grafts (arterial replacements), types, properties, practical use, production.
11.Natural and artificial heart valves, principals of function, overview of products.
12.Ventricular assist devices and total artificial hearts.
13.Actual possibilities of FEM in modelling of heart and blood vessels.
    Computer-assisted exercise 1.Evaluation of reological parameters of blood.
2.Analytical solutions to stresses in arterial wall – limitations.
3.The simplest FE models of arterial wall.
4.Application of the multielastic constitutive model.
5.Computer simulation of basic mechanical tests of hyperelastic materials.
6.Application of hyperelastic constitutive models in stress-strain analysis of arterial wall.
7.Modelling of viscoelastic material behaviour.
8.Viscoelastic model of vascular wall.
9.Orthotropic model of vascular wall.
10.Evaluation of residual stresses in arterial wall.
11.Fictive temperature method in calculation of residual stresses.
12.Formulation of closing project.
13.Evaluation of the closing project, test of basic knowledge, credit.
Literature - fundamental:
1. Cardiovascular solid mechanics. Cells, Tissues and Organs.Springer, 2002.
2. Biomechanics. Mechanical properties of living tissues.Springer, 1993.
3. Křen J., Rosenberg J., Janíček P.: Biomechanika
Literature - recommended:
1. Křen J., Rosenberg J., Janíček P.: Biomechanika
2. Valenta a kol.: Biomechanika srdečně cévního systému
3. Čihák R.: Anatomie
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
M2I-Z visiting student M-STI Mechanical Engineering -- GCr 5 Recommended course 2 1 S