Electrical Servodrives (FSI-RES)

Academic year 2018/2019
Supervisor: doc. Ing. Pavel Vorel, Ph.D.  
Supervising institute: ÚMTMB all courses guaranted by this institute
Teaching language: Czech
Aims of the course unit:
The goal of the subject is to provide students with knowledge of principles, design methods and application of electrical servodrives with DC machines, induction machines, electronically commutated machines, synchronous machines with permanent magnets and stepping motors.
Learning outcomes and competences:
Students will acquire knowledge of principles, design methods and control structures and algorithms of electrical servodrives that can be applied for numeric controlled machines
Prerequisites:
Static and dynamic properties of electrical machines, principles of power electronics, principles of feedback control theory
Course contents:
The subject familiarises students with the basic problems of electrical servodrives and their role in motion control of production machines and appliances. The basic demands on static and dynamic properties of servos are defined, the basic components of electrical servosystems (DC,electronically commutated DC, synchronous, asynchronous and linear machines, power converters, sensors and controllers) are explained, the design-methods of feedback systems (position-loop, speed-loop, current-loop, position control with subordinate speed and current control, dynamic stiffness of a position-loop, communication between a numerical control system and servodrives) are treated and the interaction of load-inertia of servomechanisms is described.
Teaching methods and criteria:
The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.
Assesment methods and criteria linked to learning outcomes:
The course-unit creditts is awarded on condition of having solved of given problems. Examination has a written and an oral part
To get credits there is required solution of given problems
Examination has a written and an oral part.
Controlled participation in lessons:
Mandatory numeric and computer exercises, absence can be compensated for via make-up homework
Type of course unit:
    Lecture  13 × 2 hrs. optionally                  
    Exercise  13 × 1 hrs. compulsory                  
Course curriculum:
    Lecture 1. Design methods of servodrives
2. Position control of servodrives of working machines
3. DC servodrives
4. Tranzistorised DC servodrives
5. Servodrives with an electronically commutated motor
6. Drives with induction motors
7. Drives with frequency converters
8. Drives with synchronous motors
9. Drives with stepping motors
10.Control structures of servodrives
11.Control structures with microcomuters
12.Transistor frequency converters for servodrives
13.Examples of industrial applications of servodrives
    Exercise 1. Dimensions-design of a feed drive
2. Kinematic and dynamic analysis of a robot with 2 degree of freedom
3. Static and dynamic properties of a DC machine
4. Mathematical model of a DC machine
5. Transfer function and frequency response of a DC machine
6. Design of a speed controller of the DC drive
7. Frequency response and step response of the target tracking
8. Frequency response and step response of the disturbance rejection
9. Simulation of a DC drive applying MATLAB/SIMULINK
10.Design and simulation of a position control
11.Calculation of a starting of the induction machine
12.Mathematical model of a synchronous machine with PM
13.Simulation of a synchronous servodrive
Literature - fundamental:
1. Skalický, Jiří: Elektrické servopohony skripta VUT v Brně, FEKT, 2001
2. Pavelka, J., Čeřovský, Z., Javůrek, J.: Elektrické pohony, skripta ČVUT Praha, 1996
3. Caha, Z., Černý, M.: Elektrické pohony SNTL Praha, 1990
4. Leonhard, W.: Control of Electrical Drives Springer, Berlin 1996
Literature - recommended:
1. Souček, P. : Pohony výrobních zařízení. Servomechanizmy
2. Bělohoubek, P. : Elektrické servomechanizmy a jejich řízení
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
M2A-P full-time study M-MET Mechatronics -- Cr,Ex 6 Compulsory 2 2 W