Academic year 2018/2019 |
Supervisor: | Ing. Martin Antoš, Ph.D. | |||
Supervising institute: | ÚFI | |||
Teaching language: | Czech | |||
Aims of the course unit: | ||||
The aim of the course is to acquaint students with the progress in the field of laser technique and with modern application of lasers in the physical quantities measurement, as well as technology and medicine. The course will include demonstration of concrete application of lasers. | ||||
Learning outcomes and competences: | ||||
Students will acquire basic knowledge needed for design and approximate calculations of optical systems. In practicals students will solve calculations of real optical systems focused on their practical utilisation. | ||||
Prerequisites: | ||||
Electron theory of the solid state matter, free electron theory, band gap model, semiconductors, p-n junction, light interaction with solids, Dopplers effect, electromagnetic waves, Maxwell equations, wave equation, reflection and refraction, total reflection, polarised and non-polarised light, interference of the light. | ||||
Course contents: | ||||
The course deals with the following topics: Laser construction, resonator and active medium theory, properties of the light (coherence, propagation of light, active environment theory), tunable lasers - linear spectroscopy, non-linear effects, dye lasers. Coherent lasers - design (He-Ne), energy levels, spectral line width, mode structure. Coherent lasers applications - interferential measurement of geometrical quantities, metrology, length standard, interferometer calibration. Optical trapping, argon laser, optical tunnelling microscope. Laser diodes - types, optical properties, applications, fibre optics, barcode reader, LIDAR, etc. Pulse lasers (Nd:YAG), medicine applications, generation of very short pulses. Power lasers - CO2, laser cutting, surgery. Excursion in laboratories on Institute of Sci. Instr. and in the Technology Centre. | ||||
Teaching methods and criteria: | ||||
The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures. | ||||
Assesment methods and criteria linked to learning outcomes: | ||||
Attendance at practicals is compulsory, one written test in the middle of the semester and one report on a CAD project. | ||||
Controlled participation in lessons: | ||||
Attendance at practicals is obligatory. Absence may be compensated for by the agreement with the teacher depending on the length of absence. | ||||
Type of course unit: | ||||
Lecture | 13 × 1 hrs. | optionally | ||
Computer-assisted exercise | 13 × 2 hrs. | compulsory | ||
Course curriculum: | ||||
Lecture | Laser construction, resonator and active medium theory, properties of the light (coherence, propagation of light, active environment theory). Tuneable lasers - linear spectroscopy, non-linear effects, dye lasers. Coherent lasers - design (He-Ne), energy levels, spectral line width, mode structure. Coherent lasers applications - interferential measurement of geometrical quantities, metrology, length standard, interferometer calibration. Optical trapping, argon laser, optical tunnelling microscope. Laser diodes - types, optical properties, applications, fibre optics, barcode reader, LIDAR, etc. Pulse lasers (Nd:YAG), medicine applications, generation of very short pulses. Power lasers - CO2, laser cutting, surgery. |
|||
Computer-assisted exercise | Laser construction, resonator and active medium theory, properties of the light (coherence, propagation of light, active environment theory). Tuneable lasers - linear spectroscopy, non-linear effects, dye lasers. Coherent lasers - design (He-Ne), energy levels, spectral line width, mode structure. Coherent lasers applications - interferential measurement of geometrical quantities, metrology, length standard, interferometer calibration. Optical trapping, argon laser, optical tunnelling microscope. Laser diodes - types, optical properties, applications, fibre optics, barcode reader, LIDAR, etc. Pulse lasers (Nd:YAG), medicine applications, generation of very short pulses. Power lasers - CO2, laser cutting, surgery. Excursion in laboratories on Institute of Sci. Instr. and in the Technology Centre. |
|||
The study programmes with the given course: | |||||||||
Programme | Study form | Branch | Spec. | Final classification | Course-unit credits | Obligation | Level | Year | Semester |
M2A-P | full-time study | M-PMO Precise Mechanics and Optics | -- | Col | 4 | Compulsory | 2 | 1 | S |
M2A-P | full-time study | M-FIN Physical Engineering and Nanotechnology | -- | Col | 4 | Compulsory-optional | 2 | 1 | S |
Faculty of Mechanical Engineering
Brno University of Technology
Technická 2896/2
616 69 Brno
Czech Republic
+420 541 14n nnn
+420 726 81n nnn – GSM Telef. O2
+420 604 07n nnn – GSM T-mobile
Operator: nnnn = 1111