Academic year 2018/2019 |
Supervisor: | prof. RNDr. Miloslav Druckmüller, CSc. | |||
Supervising institute: | ÚM | |||
Teaching language: | Czech | |||
Aims of the course unit: | ||||
Then aim of the course is to extend students´knowledge of real variable analysis to complex domain. | ||||
Learning outcomes and competences: | ||||
Fundamental knowledge of complex functions analysis. | ||||
Prerequisites: | ||||
Knowledge of mathematical analysis at the basic course level | ||||
Course contents: | ||||
The course familiarises students with fundamentals of the complex variable analysis. It gives information about elementary functions of complex variable, about derivative and the theory of analytic functions, conform mapping, and integration of complex variable functions including the theory of residua. |
||||
Teaching methods and criteria: | ||||
The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures. | ||||
Assesment methods and criteria linked to learning outcomes: | ||||
Course-unit credit - based on a written test. Exam has a written and an oral part. |
||||
Controlled participation in lessons: | ||||
Missed lessons can be compensated for via a written test. | ||||
Type of course unit: | ||||
Lecture | 13 × 2 hrs. | optionally | ||
Exercise | 13 × 2 hrs. | compulsory | ||
Course curriculum: | ||||
Lecture | 1. Complex numbers, Gauss plain, sets of complex numbers 2. Functions of complex variable, limit, continuity, elementary functions 3. Series and rows of complex numbers 4. Curves 5. Derivative, holomorphy functions, harmonic functions 6. Series and rows of complex functions, power set 7. Integral of complex function 8. Cauchy's theorem, Cauchy's integral formula 9. Laurent set 10. Isolated singular points of holomorphy functions 11. Residua 12. Using of residua 13. Conformal mapping |
|||
Exercise | 1. Complex numbers, Gauss plain, sets of complex numbers 2. Functions of complex variable, limit, continuity, elementary functions 3. Series and rows of complex numbers 4. Curves 5. Derivative, holomorphy functions, harmonic functions 6. Series and rows of complex functions, power set 7. Integral of complex function 8. Cauchy's theorem, Cauchy's integral formula 9. Laurent set 10. Isolated singular points of holomorphy functions 11. Integration using residua theory 12. Using of residua 13. Test |
|||
Literature - fundamental: | ||||
1. Druckmüller, M., Ženíšek, A.: Funkce komplexní proměnné, PC-Dir Real, Brno 2000 | ||||
2. Šulista, M.: Základy analýzy v komplexním oboru, Stát.nakl.techn.lit., Praha 1981 | ||||
3. Druckmüller, M., Svoboda, K.: Vybrané statě z matematiky I., skriptum FS VUT Brno, Brno 1986 | ||||
Literature - recommended: | ||||
1. Druckmüller, M., Ženíšek, A.: Funkce komplexní proměnné, PC-Dir Real, Brno 2000 proměnné, PC-Dir Real, Brno 2000 | ||||
2. Druckmüller, M., Svoboda, K.: Vybrané statě z matematiky I., skriptum FS VUT Brno, Brno 1986 | ||||
3. Šulista, M.: Základy analýzy v komplexním oboru, Stát.nakl.techn.lit., Praha 1981 | ||||
4. Šulista, M.: Analýza v komplexním oboru, Stát.nakl.techn.lit., Praha 1986 |
The study programmes with the given course: | |||||||||
Programme | Study form | Branch | Spec. | Final classification | Course-unit credits | Obligation | Level | Year | Semester |
B3A-P | full-time study | B-FIN Physical Engineering and Nanotechnology | -- | Cr,Ex | 4 | Compulsory | 1 | 3 | W |
Faculty of Mechanical Engineering
Brno University of Technology
Technická 2896/2
616 69 Brno
Czech Republic
+420 541 14n nnn
+420 726 81n nnn – GSM Telef. O2
+420 604 07n nnn – GSM T-mobile
Operator: nnnn = 1111