Academic year 2018/2019 |
Supervisor: | Ing. František Vdoleček, CSc. | |||
Supervising institute: | ÚAI | |||
Teaching language: | Czech | |||
Aims of the course unit: | ||||
Students will gain a more detailed overview of the field of metrology and technical diagnostics, as they are now used mainly in the everyday practice of automatic control systems and modern maintenance systems. | ||||
Learning outcomes and competences: | ||||
General overview of the means of measuring and diagnostic techniques. Detailed knowledge of the issues metrological traceability of instruments. The ability to design an appropriate measurement or diagnostic string for the application. | ||||
Prerequisites: | ||||
Basic knowledge from physics, mathematics, statistics and mechanics, introduction to the theory of the automatic control. | ||||
Course contents: | ||||
The course represents some connection problems of measurement and technical diagnostics. Operation of modern machines and equipment are already is inconceivable without mastering systems of maintenance and diagnostics integrated them. Diagnostic technique is again able to perform its function without quality measuring techniques. The course therefore focuses on quality measurements, traceability of measuring instruments, their calibration and verification. In the following notes diagnostics in maintenance systems, especially the methods and means of basic two most common branches - vibrodiagnostics and thermodiagnostics. The whole addresses the issue in the context of the modern of the art including computer support. All is focused not only on conventional machines and equipment, but also to elements of control systems. Attention is also paid to the influence of environment on measurement and diagnostic equipment as well as monitoring parameters and its the subsequent correction. | ||||
Teaching methods and criteria: | ||||
The course is taught through lectures explaining the basic principles and theory of the discipline. Teaching is suplemented by practical laboratory work. | ||||
Assesment methods and criteria linked to learning outcomes: | ||||
Course - unit credit: participation in laboratory exercises and presentation of measurement results. Resulting evaluation up to 30 points is included in the result of the examination, provided credit is to obtain at least 16 points. Exam: written test of all problems the subject (0 - 30 points), oral exam with written preparation (0 - 40 points). Total the student receives up to 100 points, condition passing of the exam at least 51 points. Classification: excellent (91-100 points), very good (81-90 points), good (71-80 points), satisfactory (61-70 points), sufficient (51-60 points), failed (0-50 points). | ||||
Controlled participation in lessons: | ||||
Attendance in laboratory excercies is monitored; one absence can be compensated for by attending a seminar with another group; next absence is compensated by solving an individual assignment. | ||||
Type of course unit: | ||||
Lecture | 13 × 3 hrs. | optionally | ||
Labs and studios | 13 × 2 hrs. | compulsory | ||
Course curriculum: | ||||
Lecture | 1. Introduction into the subject 2. Metrology and traceability of meters, calibration and verification of measuring instruments 3. Analysis of uncertainty in measurement and in the calibration 4. Basic schemes of reliability 5. Selected measurement techniques for applications in control and technical diagnostics 6. Diagnostic technique in maintenance systems 7. Measuring technique for vibrodiagnostics and its specificities 8. Measuring technique for thermodiagnostics and its specificities 9. Environmental influences on measurement and diagnostic techniques 10. Monitoring and correction of environmental parameters 11. Automatic measuring and monitoring systems 12. Software and instrumentation for automated measurement 13. Software and instrumentation for computer-aided machine condition monitoring |
|||
Labs and studios | 1. Examples of schemes traceability of meters 2. Models calibration of measuring instruments including uncertainty analysis 3. Analysis of reliability chains 4. Predictive maintenance systems and measurement and diagnostic techniques in them 5. Properties of vibration sensors 6. Properties of contact thermometers 7. Properties of non-contact thermometers 8. Analysis of temperature field of monitoring object 9. Instrumentation for monitoring environmental parameters 10. Correction of environmental influences in measurement results and diagnosis 11. Computer aided measurement and monitoring systems 12. Examples of program equipment 13. The final exercise, presentation of measurement results |
|||
The study programmes with the given course: | |||||||||
Programme | Study form | Branch | Spec. | Final classification | Course-unit credits | Obligation | Level | Year | Semester |
M2I-P | full-time study | M-AIŘ Applied Computer Science and Control | -- | Cr,Ex | 6 | Compulsory | 2 | 1 | W |
Faculty of Mechanical Engineering
Brno University of Technology
Technická 2896/2
616 69 Brno
Czech Republic
+420 541 14n nnn
+420 726 81n nnn – GSM Telef. O2
+420 604 07n nnn – GSM T-mobile
Operator: nnnn = 1111