Heat Exchangers (FSI-LVT)

Academic year 2021/2022
Supervisor: doc. Ing. Marek Baláš, Ph.D.  
Supervising institute: all courses guaranted by this institute
Teaching language: Czech
Aims of the course unit:
The aim is to get acquainted with all aspects of heat, strength and hydraulic (aerodynamic) design of heat exchangers.
Learning outcomes and competences:
Students will acquire advanced knowledge of engineering tasks in heat exchanger designs. The student will acquire practical skills in heat design of heat exchangers, calculation of pressure losses and strength calculations. This knowledge will be used in the fields of power engineering, heating, heating, air conditioning, heat recovery, chemical and process engineering, and can be used in manufacturing plants, investors and operators.
Prerequisites:
Thermomechanics, Combustion Devices and Heat Exchangers, Heat and Mass Transfer
Course contents:
Course contents: Summary of basic prerequisites, work with standardization of TEMA and its use in the basic design of heat exchangers, detailed design of the bundle heat exchanger (tube geometry, bulkheads, sheath current analysis), vibrations induced by flow in the shell (prediction, criteria of severity, design), calculation of pressure losses, strength calculation, influence of exchangers (corrosion, fouling) on the design of exchangers. The other principles will be the basic principles for designing phase change exchangers (capacitors, reboilers). Last but not least, the students will be introduced to the basic design of other types of exchangers - plate heat exchangers and regenerative exchangers.
Teaching methods and criteria:
The course is taught in the form of lectures, where the students will be acquainted with specific methods of calculation of exchangers. Exercise is focused on the practical handling of the substance discussed at the lectures.
Assesment methods and criteria linked to learning outcomes:
The granting of credit is conditioned by activity on exercises, processing semestral work and mastering of the credit test. The exam is written with a possible oral correction and will verify the knowledge in the field of theoretical preparation.
Controlled participation in lessons:
 
Type of course unit:
    Lecture  13 × 2 hrs. optionally                  
    Exercise  13 × 2 hrs. compulsory                  
Course curriculum:
    Lecture 1. Principles of heat transport, types of heat exchangers
2. Methods of design of exchangers - LMTD, NTU
3. Shell and tube heat exchangers according to TEMA
4. Basic design of shell and tube exchangers
5. Advanced design of shell and tube exchangers
6. Heat exchangers - condensation
7. Heat exchangers - boiling
8. Hydraulic / aerodynamic calculation
9. Vibration and their elimination, strength calculation
10. Steam generators nuclear power plants
11. Basic design of plate heat exchangers
12. Basic design of regenerative heat exchangers
13. Exchanger operation - fouling, corrosion
    Exercise 1. Principles of heat transport, types of heat exchangers
2. The LMTD method
3. The NTU method
4.-7. Design of shell and tube heat exchangers
8. Condenser
9. Reboiler
10. Hydraulic / aerodynamic calculation
11. Strength calculation
12. Design of plate exchanger
13. Credit test
Literature - fundamental:
1. BALÁŠ, Marek. Kotle a výměníky tepla. Vyd. 2. Brno: Akademické nakladatelství CERM, 2013. ISBN 978-80-214-4770-7.
2. STEHLÍK, Petr, Josef KOHOUTEK a Jan NĚMČANSKÝ. Tepelné pochody: Výpočet výměníku tepla. Brno: VUT, 1991. Učební texty vysokých škol. ISBN 80-214-0363-2.
3. ŠESTÁK, Jiří a Rudolf ŽITNÝ. Tepelné pochody II: výměníky tepla, odpařování, sušení, průmyslové pece a elektrický ohřev. Vyd. 2. V Praze: Nakladatelství ČVUT, 2006c1997, 165 s. ISBN 80-01-03475-5.
4. KUPPAN, Thulukkanam. Heat exchanger design handbook. New York: Marcel Dekker, 2000. Mechanical engineering (Marcel Dekker, Inc.). ISBN 0-8247-9787-6.
Literature - recommended:
1. PAVELEK, Milan. Termomechanika. Brno: Akademické nakladatelství CERM, 2011. ISBN 978-80-214-4300-6.
2. Incropera, F. P., DeWitt, D. P.: Fundamentals od Heat and Mass Transfer. 3rd ed. John Wiley & Sons, New York, 1990.
3. G. F. HEWITT (executive editor): Heat Exchanger Design Handbook 1998, Begell House, New York, 1998.
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
N-ETI-P full-time study ENI Power Engineering -- Cr,Ex 6 Compulsory 2 2 W