Finite Element Method - Advanced Analyses (FSI-ZAW)

Academic year 2021/2022
Supervisor: doc. Ing. Pavel Maňas, Ph.D.  
Supervising institute: ÚK all courses guaranted by this institute
Teaching language: Czech
Aims of the course unit:
Aim of the course is to extend students’ knowledge in area of finite element methods (FEM), while practicing ANSYS Workbench software. Emphasis is placed on acquiring comprehensive knowledge about FEM analyses through practical exercises focused on: computational model creation; correct solver settings, solution and interpretation of the results.
Learning outcomes and competences:
Students will significantly extend their knowledge in the field of FEM. They will learn to work in ANSYS Workbench environment. Due to analysis of real components and structures, they will learn self-reliance in the FEM calculations.
Prerequisites:
- Knowledge of mechanics, dynamics, strength of materials, CAD modelling and material sciences at the level of bachelor's study of mechanical engineering.
Course contents:
Solution of real engineering problems using FEM. Calculation of linear and non-linear analysis of beam structures, stress-strain analysis of machine parts, contact analysis, modal analysis, heat transfer, basics of CFD analysis and topological optimalization. Emphasis is placed also on the analysis and interpretation of results, which is an inseparable part of FEM analyses.
Teaching methods and criteria:
Lectures, seminars, self-study.
Assesment methods and criteria linked to learning outcomes:
Course credit is awarded on the following conditions:
- active taking part in the lectures (max. 10 points),
- solving of assigned tasks and presentation of results (max. 30 points),
- at least it is necessary to get 20 points.
Exam is awarded on the following conditions:
- practical part: methodically correct solution of assigned task (max. 40 points),
- oral exam (max. 20 points),
- together one can obtain up to 100 points, final grade is determined in accordance with ECTS grading scale.
Controlled participation in lessons:
Attendance at practicals is obligatory and checked by the lecturer. One excused absence can be tolerated without compensation. In case of longer absence, compensation of missed lessons depends on the instructions of course supervisor.
Type of course unit:
    Lecture  13 × 1 hrs. optionally                  
    Laboratory exercise  1 × 1 hrs. compulsory                  
    Computer-assisted exercise  12 × 3 hrs. compulsory                  
Course curriculum:
    Lecture - FEM: types of analyses, parametric model, interpretation, verification and validation of results.
- Steady-state thermal analysis.
- Introduction to CFD.
- Introduction to multiphysics analysis
- Introduction to dynamics: rigid body, transient dynamics analysis.
- Optimization.
- Explicit dynamics: impact, forming, blast.
- Simulation of additive manufacturing processes.
    Laboratory exercise - Determination of parameters for advanced material model
    Computer-assisted exercise - Parametric geometry, advanced meshing, advanced material models.
- Thermal analysis of part.
- CDF analysis of valve, air flow around part.
- Simple multiphysics analysis, FSI, CFD analysis of flow and heat transfer.
- Rigid body dynamics, response of part/structure to vibration.
- Drop test of part, energy absorber.
- Topological optimalization, part geometry optimalization.
- Final seminar, presentation of results.
Literature - fundamental:
1. KUROWSKI, Paul M., Finite Element Analysis for Design Engineers. Second edition. SAE International, 2017. ISBN-PDF 978-0-7680-8369-9. [online] Dostupné z: https://app.knovel.com/web/toc.v/cid:kpFEADEE04/viewerType:toc//root_slug:finite-element-analysis/url_slug:finite-element-analysis?b-q=kurowski&sort_on=default&b-group-by=true&b-sort-on=default&b-content-type=all_references&include_synonyms=no
2. RUGARLI, Paolo. Structural analysis with finite elements. Thomas Telford Limited, 2010. ISBN 978-0-7277-4093-9. [online] Dostupné z: https://app.knovel.com/web/toc.v/cid:kpSAFE0003/viewerType:toc//root_slug:structural-analysis-with/url_slug:structural-analysis-with?b-q=rugarli&sort_on=default&b-group-by=true&b-sort-on=default&b-content-type=all_references
Literature - recommended:
1. ANSYS Student Support Resources. [Online] Dostupné z: https://www.ansys.com/academic/free-student-products/support-resources.
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
N-KSI-P full-time study --- no specialisation -- Cr,Ex 4 Compulsory 2 1 S