Fractography and Micromechanisms of Failures (FSI-9FMP)

Academic year 2021/2022
Supervisor: doc. Ing. Libor Pantělejev, Ph.D.  
Supervising institute: ÚMVI all courses guaranted by this institute
Teaching language: Czech
Aims of the course unit:
The course focuses on the explanation of the causes of machine-part failures, failure micromechanisms, methods of macrofractographic and microfractographic studies, classification and description of fracture appearance with the aim of making students familiar with the potentials of applying fractography to the solution of practical production problems, damages assessment and determination of their causes, materials selection optimisation, etc.
Learning outcomes and competences:
The knowledge of failure micromechanisms and methods of studying them. Understanding the relations between the properties of materials, the causes of their failures, and ways of preventing failures. The application of fractography as an important tool in solving production problems and breakdowns.
Prerequisites:
Good knowledge of strength properties of materials and testing of mechanical properties is assumed.
Course contents:
In the frame of the course “Fractography and fracture micromechanisms”, causes and consequences of different types of failures will be explained to students. Fractography and fracture surface morphology as manifestation of the material response to mechanical loading. Fractographic methods and procedures applied during fracture damage, including fractographic terms systemization. Nature and ways of fracture identification based on crack trajectory (transcrystalline, intercrystalline) and fracture micromechanisms (cleavage, ductile fracture, quasi-cleavage, fatigue, and creep fracture as well as special fracture types). Lectures will be focused not only on fractures originated under laboratory conditions, but also on damages occurred during service of components and with identification of these fractures, including expert witness analyses.
Teaching methods and criteria:
The course consists of lectures explaining the basic principles and theory of the discipline.
Assesment methods and criteria linked to learning outcomes:
The final evaluation will be based on a presentation of students focussed on a given topic - assessment of failure in service.
Controlled participation in lessons:
Attendance at lectures is not mandatory, nevertheless, it is highly recommended.
Type of course unit:
    Lecture  10 × 2 hrs. optionally                  
Course curriculum:
    Lecture 1. Fracture causes and consequences. Fracture surface as a complex manifestation of materials structure response to mechanical loading.
2. Procedures and experimental methods exploited during fractographic analyses.
3. Definition and systemization of fractographic concepts and failure micromechanisms characterization.
4. Transcrystalline and intercrystalline failures. Cleavage and ductile micromechanism of failure.
5. Cleavage intercrystalline and transcrystalline fracture as manifestation of materials degradations.
6. Fatigue fractures.
7. Creep fractures.
8. Stress corrosion cracking, hydrogen embrittlement.
9. Special cases of fractures.
10. Methodology for solving the causes of fractures during operations, expert witness analyses.
Literature - fundamental:
1. Fractography, ASM Handbook, Vol. 12, ASM International, 1987, 517 s., ISBN: 978-0-87170-018-6
2. Fatigue and Fracture, ASM Handbook, Vol. 19, ASM International, 1996, 1057 s., ISBN: 0-87170-385-9
3. Failure Analysis and Prevention, ASM Handbook, Vol. 11, ASM International, 2002, 1050 s., ISBN: 0-87170-704-7
4. SURESH, S. Fatigue of Materials. 2nd edition. Cambridge, UK: Cambridge University Press, 1998. ISBN 0-521-57847-7.
Literature - recommended:
1. SURESH, S. Fatigue of Materials. 2nd edition. Cambridge, UK: Cambridge University Press, 1998. ISBN 0-521-57847-7.
2. DOWLING, Norman E. Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue. Engelwood Cliffs, N.J.: Prentice-Hall, 1993. ISBN 0-13-026956-5.
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
D-MAT-P full-time study --- no specialisation -- DrEx 0 Recommended course 3 1 W
D-MAT-K combined study --- no specialisation -- DrEx 0 Recommended course 3 1 W