Heat Transfer Processes (FSI-9TPZ)

Academic year 2021/2022
Supervisor: prof. Ing. Petr Stehlík, CSc., dr. h. c.  
Supervising institute: ÚPI all courses guaranted by this institute
Teaching language: Czech
Aims of the course unit:
The course objective is for students to acquire basic theoretical knowledge of heat transfer, which is important for solving practical problems. Students will learn how to work with technical literature and they will master basic regularities.
Learning outcomes and competences:
Students realize the importance of theoretical knowledge for practical solutions of industrial heat transfer devices. The process is realized through suitable equipment connection to achieve current requirements such as the protection of the environment, reduction of energy consumption, emissions reduction and economical operation.
Prerequisites:
Thermodynamics, and Hydromechanics
Course contents:
The course on "Heat Transfer Processes" is one of basic theoretical courses of Process Engineering specialization. It is concerned with solving various heat transfer systems and equipment. Solutions are made based on recent required industrial priorities such as environmental protection and ecological aspects, decreasing of energy consumption, emissions reductions and economical operation. The course includes also teaching modules from international projects solved together with world reputable universities.
Teaching methods and criteria:
The course is taught through lectures explaining the basic principles and theory of the discipline.
Assesment methods and criteria linked to learning outcomes:
Course is concluded by exam. Handover of written work is necessary 2 weeks before exam. The exam is in oral form, evaluation of written work represents 50% of the final evaluation.
Controlled participation in lessons:
The attendance at lectures is recommended.
The students’ knowledge is checked by the oral exam connected with defence of written students work. Missed lesson can be substituted by self-study with use of study materials (literature) specified by course lecturer.
Type of course unit:
    Lecture  10 × 2 hrs. optionally                  
Course curriculum:
    Lecture - Significance of heat transfer processes in process engineering, relationship between theory and practice.
- Basic types of heat transfer equipment, literature overview.
- Basic equations for heat exchanger design.
- Shell-and-tube heat exchangers (SHE) – description, design principles.
- SHE continued: calculation methods, thermal and hydraulic calculations.
- SHE continued: correction coefficients, Bell-Delaware method and its application.
- SHE continued: design and rating calculation procedures, computation algorithm.
- Plate heat exchangers (description, usage, advantages, calculation procedure).
- Compact heat exchangers (description, usage, advantages, calculation procedure).
- Air coolers (description, usage, advantages, calculation procedure). Special heat exchangers.
- Heat exchangers with two-phase flow, boiling, condensation.
- Heat exchanger optimisation, functionality check, fouling, validation of equations.
- Fired heaters (heaters and reaction furnaces, description, usage, advantages, calculation procedure).
- Evaporators and boilers (description and usage, design procedure).
Literature - fundamental:
1. Serth, R. W.; Lestina, T. G.: Process Heat Transfer: Principles, Applications and Rules of Thumb, 2nd ed., Academic Press, Waltham, MA, USA (2014)
2. Kuppan, T.: Heat Exchanger Design Handbook, 2nd ed., CRC Press, Boca Raton, FL, USA (2013)
3. Ledoux, M.; El Hami, A.: Heat Transfer, Volumes 1–4, John Wiley & Sons, Inc., Newark, NY, USA (2021–2023)
Literature - recommended:
1. Kakaç, S; Liu, H.: Heat Exchangers: Selection, Rating, and Thermal Design, 3rd ed., CRC Press, Boca Raton, FL, USA (2012)
2. Stephan, P. (ed.): VDI Heat Atlas, 2nd ed., Springer, Berlin, Germany (2010)
3. Green, D. W.; Perry, R. H.: Perry’s Chemical Engineer’s Handbook, 8th ed., McGraw-Hill, New York, NY, USA (2008)
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
D-ENE-P full-time study --- no specialisation -- DrEx 0 Recommended course 3 1 W
D-ENE-K combined study --- no specialisation -- DrEx 0 Recommended course 3 1 W