Special Technology of Machining (FSI-HO1-K)

Academic year 2021/2022
Supervisor: doc. Ing. Josef Sedlák, Ph.D.  
Supervising institute: ÚST all courses guaranted by this institute
Teaching language: Czech
Aims of the course unit:
The aim of the course is to familiarise students with automation of a short-run and single-part production focusing on an application of numeric cntrol machine tools including technical production planning.
Learning outcomes and competences:
The students will obtain theoretical fundamentals of a machining technology with the use of numeric control machine tools, they will learn basic methods of programming of these tools, and will be acquainted with economic aspects of technological disciplines.
Prerequisites:
The fundamentals of the metal cutting theory, probability theory, differential and integral calculus, determinants, dynamic of the mass point, mechanical work and energy, molecular physics and thermodynamics
Course contents:
The course is focused on the machining technology used with numeric control machine tools. Students will obtain basic knowledge of programming NC-machines, they will familiarise with the use of linear programming in the technology, especially for determining optimum cutting parameters, with solution of dimensional chains in TPV applying methods of mathematical statistics, theory of operating allowances, and with conventional, as well as prospective cutting tools used with NC-machines. Practical exercises are carried out on CNC educational machine tools and PCs, used especially for a simulation of the machining at NC- machines and solving of linear programming tasks.




The subject is directed to the machining technology on CNC machine tools. The students are given the basic knowledge in the programming of NC machine tools such as linear programming in technology, especially for determination of optimum cutting parameters, solution of dimensional chains with the application of mathematical statistics methods. Practical exercises are realised on CNC machine tools and PC especially by simulation
Teaching methods and criteria:
The course is taught through lectures explaining the basic principles and theory of the discipline. Teaching is suplemented by practical laboratory work.
Assesment methods and criteria linked to learning outcomes:
Credit requirements include an active participation in all exercises, completing all tasks in the laboratory exercises, and delivery of all required written work. In well-founded cases the teacher can set further conditions as a compensation. The examination tests the knowledge and, in particular, the ability to apply the knowledge independently in solving assigned tasks. The examination consists of a written (test or written exam) and oral part. If the student fails to apply the knowledge in practice, the examination will be graded as unsatisfactory.
Controlled participation in lessons:
Students work is systematically controlled in a form of short written tests, individual compensatory assignments and result check.
Type of course unit:
    Guided consultation in combined form of studies  1 × 13 hrs. compulsory                  
    Guided consultation  1 × 52 hrs. optionally                  
    Laboratory exercise  1 × 13 hrs. compulsory                  
Course curriculum:
    Guided consultation in combined form of studies High-precision machining, calculation or dimension inspection.
Application of new and advanced progressive technologies.
Machining of heavy-duty, modern or prospective technical materials.
Basic concepts of linear programming, Simplex method.
LP application for selection of cutting conditions.
Selection of cutting conditions using conventional optimization methods.
Automation of the manufacturing process in small-scale production, basics of CNC technology.
HSC, HFM, HPM technology.
Machining shape-size or dimensionally extreme components.
Production of gears.
Application of modern technologies, processing of measured data and their possible use.
Micromachining.
Manufacturing Technologies of composite materials.
Use of additive technology – 3D printing technology, reverse engineering technology.
Rapid production of molds in the foundry.
Study of materials made by classical and modern additive laser technology of powder metallurgy. Prototype knee implant production technology with specific requirements for shape and function surfaces.
    Guided consultation High-precision machining, calculation or dimension inspection.
Application of new and advanced progressive technologies.
Machining of heavy-duty, modern or prospective technical materials.
Basic concepts of linear programming, Simplex method.
LP application for selection of cutting conditions.
Selection of cutting conditions using conventional optimization methods.
Automation of the manufacturing process in small-scale production, basics of CNC technology.
HSC, HFM, HPM technology.
Machining shape-size or dimensionally extreme components.
Production of gears.
Application of modern technologies, processing of measured data and their possible use.
Micromachining.
Manufacturing Technologies of composite materials.
Use of additive technology – 3D printing technology, reverse engineering technology.
Rapid production of molds in the foundry.
Study of materials made by classical and modern additive laser technology of powder metallurgy. Prototype knee implant production technology with specific requirements for shape and function surfaces.
    Laboratory exercise Dimensional chains in production - Calculation for complete interchangeability.
Machining Accuracy - Probability Application.
Thermal balance of the cutting process.
Fundamentals of ISO code. Programming CNC milling machine or lathe.
Conventional optimization of cutting conditions.
Linear programming - Simplex method.
Applications of linear programming.
Production technology of gearing.
Application of advanced Rapid Prototyping technologies.
Literature - fundamental:
1. KOCMAN, K. Speciální technologie obrábění. 3. ed. Brno: AKADEMICKÉ NAKLADATELSTVÍ CERM, s.r.o., 2004. 227 s. ISBN 80-214-2562-8.
2. PÍŠKA, M. a kolektiv. Speciální technologie obrábění. 1. vyd. Brno: AKADEMICKÉ NAKLADATELSTVÍ CERM, s.r.o., 2009. 246 s. ISBN 978-80-214-4025-8.
3. KOCMAN, K. a kolektiv. Aktuální příručka pro technický úsek. 15. ed. Edit. S. Hanzlík, Praha, Verlag Dashöfer, 2000 3950 s. ISBN 80-902247-2-5.
4. KOCMAN, K., PROKOP, J. Technologie obrábění. 2. vyd. Brno: Akademické nakladatelství CERM, s.r.o., 2005. 270 s. ISBN 80-214-3068-0.
5. SHAW, M. C. Metal Cutting Principles. 2nd ed. Oxford University Press, 2005. 651 pp. ISBN 0-19-514206-3.
6. AB SANDVIK COROMANT – SANDVIK CZ, s.r.o. Příručka obrábění-kniha pro praktiky. Přel. KUDELA, M. Praha: Scientia, s.r.o., 1997. 857 s. Přel. z: Modern Metal Cutting – A Practical Handbook. ISBN 91-97 22 99-4-6.
7. CHUA, C. K., LEONG, K. F., LIM, C. S. Rapid Prototyping: Principles and Applications. 3rd ed. New Jersey: World Scientific, c2010, 512 pp. ISBN 978-981-277-897-0.
8. RAJA, V., FERNANDES, K. J. Reverse Engineering: An Industrial Perspective. Series: Springer Series in Advanced Manufacturing. 2008, XVIII, 242 pp. 135 illus. ISBN 978-1-84628-856-2.
Literature - recommended:
1. PÍŠKA, M. a kolektiv. Speciální technologie obrábění. 1. vyd. Brno: AKADEMICKÉ NAKLADATELSTVÍ CERM, s.r.o., 2009. 246 s. ISBN 978-80-214-4025-8.
2. KOCMAN, K. Speciální technologie obrábění. 3. ed. Brno: AKADEMICKÉ NAKLADATELSTVÍ CERM, s.r.o., 2004. 227 s. ISBN 80-214-2562-8.
3. KOCMAN, K. a kolektiv. Aktuální příručka pro technický úsek. 15. ed. Edit. S. Hanzlík, Praha, Verlag Dashöfer, 2000 3950 s. ISBN 80-902247-2-5.
4. KOCMAN, K., PROKOP, J. Technologie obrábění. 2. vyd. Brno: Akademické nakladatelství CERM, s.r.o., 2005. 270 s. ISBN 80-214-3068-0.
5. SHAW, M. C. Metal Cutting Principles. 2nd ed. Oxford University Press, 2005. 651 pp. ISBN 0-19-514206-3.
6. AB SANDVIK COROMANT – SANDVIK CZ, s.r.o. Příručka obrábění-kniha pro praktiky. Přel. KUDELA, M. Praha: Scientia, s.r.o., 1997. 857 s. Přel. z: Modern Metal Cutting – A Practical Handbook. ISBN 91-97 22 99-4-6.
7. CHUA, C. K., LEONG, K. F., LIM, C. S. Rapid Prototyping: Principles and Applications. 3rd ed. New Jersey: World Scientific, c2010, 512 pp. ISBN 978-981-277-897-0.
8. RAJA, V., FERNANDES, K. J. Reverse Engineering: An Industrial Perspective. Series: Springer Series in Advanced Manufacturing. 2008, XVIII, 242 pp. 135 illus. ISBN 978-1-84628-856-2.
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
N-STG-K combined study STG Manufacturing Technology -- Cr,Ex 6 Compulsory 2 2 W
N-STG-K combined study STM Manufacturing Technology and Management in Industry -- Cr,Ex 6 Compulsory 2 2 W