Dynamics of Electric Machines (FSI-RDM)

Academic year 2022/2023
Supervisor: doc. Ing. Radoslav Cipín, Ph.D.  
Supervising institute: ÚMTMB all courses guaranted by this institute
Teaching language: Czech
Aims of the course unit:
Dát studentům základní znalosti z elektromechanické přeměny energie, naučit je sestavit pohybové rovnice elektromechanických soustav a ukázat možnosti jejich řešení. Seznámit studenty s problematikou matematického popisu elektrických strojů a porozumění jejich funkčnímu principu.
Learning outcomes and competences:

Subject graduate should have been able:
- explain principle of electromechanical energy conversion
- derive expression of force and torque in linear and nonlinear system with linear and rotary movement and solve simple exaples,
- form dynamic equations of any electromagnetic system,
- form dynamic equations of an induction and a synchronolus machine
- describe and explain general theory of electric machines and form dynamic equations,
- explain transformation of coordinates,
- form dynamic equations of induction, synchronous and DC machines and solve electric machines transients using Matlab Simulink.

Prerequisites:
Student by měl být schopen:
- vysvětlit základní zákony elektromagnetismu, řešit stejnosměrné a střídavé obvody se soustředěnými parametry a obvody magnetické,
- derivovat funkce jedné a více proměnných včetně derivací parciálních,
- integrovat funkce jedné,
- řešit přechodné děje v lineárních a nelineárních obvodech v programu MATLAB Simulink,
- vysvětlit princip činnosti a vlastnosti elektromagnetu, transformátoru, asynchronního stroje, synchronního stroje a stejnosměrného stroje.
Course contents:

Basic concepts of electromechanical energy conversion. Electromechanical systems with multiple exciting coils, with linear and rotary motion, dynamic equations of the electromechanical system. The mathematical models of transformer, asynchronous machine, and synchronous machine.

Teaching methods and criteria:
The basic principles and theories of the subject Dynamics of Electric Machines are taught in lectures. Exercises are focused on practical mastery of the subject matter.
Assesment methods and criteria linked to learning outcomes:

Three written tests of five points each.
Five mini projects of one point each.

Credit is conditional on achieving at least seven points from written tests.

The written final exam is for eighty points.

In total, it is possible to achieve one hundred points.

To pass the exam, the student must have been awarded a credit and have a total of at least fifty points.

Controlled participation in lessons:
Attendance at lectures is obligatory.
Attendance at practical training is obligatory.
Type of course unit:
    Lecture  13 × 2 hrs. compulsory                  
    Exercise  13 × 2 hrs. optionally                  
Course curriculum:
    Lecture

1. Introduction to electromagnetic circuits.
2. Static system of two and more coils, mathematical model of transformer.
3. Equivalent circuits of the transformer and their transformations. Identification of electrical parameters.
4. Three-phase transformer.
5. Coordinate transformation.
6. Formation of force and moment in electromagnetic circuits, mathematical model of electromagnet.
7. Moving system of two or more coils, mathematical model of resolver.
8. Mathematical model of a rotary transformer.
9. Mathematical model of a DC machine.
10. Mathematical model of asynchronous machine in natural coordinates.
11. Mathematical model of an asynchronous machine in general rotating coordinates.
12. Mathematical model of a synchronous machine.
13. Analysis of steady and dynamic machine operation.

    Exercise

1. Calculations and simulations of electromagnetic circuits.
2. Calculations and simulations of electromagnetic circuits.
3. Calculations and simulations of electromagnetic circuits.
4. Transformer simulation.
5. Simulation of a three-phase transformer.
6. Coordinate transformation.
7. Calculations and simulation of electromagnet.
8. Simulation of rotary transformer.
9. Simulation of resolver.
10. DC machine simulation.
11. Simulation of asynchronous machine.
12. Simulation of asynchronous machine.
13. Synchronous machine simulation.

Literature - fundamental:
1. Chee-Mun Ong: Dynamic Simulation of Electric Machinery
2. Majmudar, H.:Elektromechanical Enargy Conversion,England Allynana Bacon
3. Měřička, Zoubek:Obecná teorie elektrického stroje,SNTL Praha
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
CŽV full-time study CZV Bases of Mechanical Engineering -- Cr,Ex 4 Compulsory 1 1 W
N-MET-P full-time study --- no specialisation -- Cr,Ex 4 Compulsory 2 1 W