Optics and Electronics in the Automotive Industry (FSI-HOE)

Academic year 2023/2024
Supervisor: Ing. Josef Vochyán, Ph.D.  
Supervising institute: ÚST all courses guaranted by this institute
Teaching language: Czech
Aims of the course unit:

Broadening the knowledge of optics and electronics in the practical application for the power LED headlight systems used in cars. A technical specification of the product approval process is included, according to the industrial property laws. The light sources and functioning of various types of optical systems and the latest trends in automotive headlights are described. In the practical part, students are trained in the optical simulations and how to evaluate the results of the simulation. Student will become familiar with the latest trends in the exterior automotive lighting. The optical part will be followed by the electronics use, such as the modern LED technologies. The modern trends in the industry field and visions are highlighted. Student gets an overview of the principles and characteristics of LEDs, means of their power, temperature parameters and ratios for LED modules as well as advanced lighting control systems in the car. The student will be familiar with the problems of producing LED modules also representing the complex group of LED chips and optical units.

Learning outcomes and competences:

Students are trained in a practical knowledge of the automobile headlights, their functioning, optical simulations of heat flux, homologation, industrial property, electronic systems associated with power LED light source, and they will be able to solve practically the related production technology, involving the manipulation and assemblies of optical components and LED sources.

Prerequisites:
Physics: basic knowledge of optics (the ray optics, interference and diffraction of light, principle of laser and wave propagations in optical materials) and of semiconductor physics (energy bands, p-n junction).
Course contents:

The course is a practical continuation of the compulsory course Optoelectronics. The course extends the knowledge of the optical part of the headlights of automobiles and includes the process from the legislative background of the design of headlights to practical examples of optical surfaces simulations. The students will deal with technical solutions of unusually thick-walled moulded optical lenses from plastic materials. Another section is devoted to the LED technologies used in headlights. Some practical proposals for the application of power LED chips and their application in assemblies consisting of three directions (reflective, project and matrix systems) are included. The electronics part is connected with practical demonstrations of samples, management and control systems, and discusses the possibilities of laser LED applications. That includes a look at the technology of assembly lines for LED systems and optical systems, their characteristics and risks associated with serial production, and it covers also the production costs of the assemblies and facilities.

Teaching methods and criteria:

The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.

Assesment methods and criteria linked to learning outcomes:
Completion of the course: graded credit
Student requirements: attendance + seminar work elaborated individually or in a team (according to the number of registered students)
Controlled participation in lessons:
All of exercise lesson are obligatory. The student’s own work and knowledge is assessed in practicals. According to the studied topic some lessons will be practicals - carried out in the lab, and some will be focused on the theory - calculations carried out in the classroom in a seminar form. Absence from seminars should be substituted for by attending a seminar with another study group or individually by the agreement with the teacher. Lessons may be occasionally inspected by the head of the department.
Type of course unit:
    Lecture  13 × 2 hrs. optionally                  
    Exercise  13 × 2 hrs. compulsory                  
Course curriculum:
    Lecture

1. The optical systems and automotive lighting functions. Market distribution in terms of technical requirements and according to the process approvals, process in general.
2. Outline of homologation according to ECE. Photometry for homologation according to ECE, light sources and photometric quantities. CIE standards and GTB
3. Optical computer simulations and modern trends in exterior automotive lighting
4. Industrial property (protected patterns, patents)
5. Industrial property in business practice
6. Industrial Engineering - Digital factory (simulation)
7. Tolerance analysis (simulation)
8. Time schedule of individual planned work tasks MTM Time analysis, standardization
9. Financial studies, calculations, Life-Cycle Costing (LCC)
10. MUDA, MURI, MURA, process optimization and efficiency improvements
11. Fundamentals of electronics in the field of LEDs, LED modules and front headlight technology
12. Gluing and LED positioning
13. Adaptive full LED headlight

    Exercise 1. The optical systems and automotive lighting functions. Market distribution in terms of technical requirements and according to the process approvals, process in general.
2. Outline of homologation according to ECE. Photometry for homologation according to ECE, light sources and photometric quantities. CIE standards and GTB
3. Optical computer simulations and modern trends in exterior automotive lighting
4. Industrial property (protected patterns, patents)
5. Industrial property in business practice
6. Industrial Engineering - Digital factory (simulation)
7. Tolerance analysis (simulation)
8. Time schedule of individual planned work tasks MTM Time analysis, standardization
9. Financial studies, calculations, Life-Cycle Costing (LCC)
10. MUDA, MURI, MURA, process optimization and efficiency improvements
11. Fundamentals of electronics in the field of LEDs, LED modules and front headlight technology
12. Gluing and LED positioning
13. Adaptive full LED headlight
Literature - fundamental:
1. Automotive Lighting. [online]. [vid. 2015-08-03]. Dostupné z: http://www.al-lighting.com
2. HELLA. [online]. [vid. 2015-08-03]. Dostupné z: http://www.hella.com
3. AFIMO. Seriál LED osvětlení [online]. [vid. 2015-08-03]. Dostupné z: http://www.afimocz.cz/serial-led-osvetleni-1-dil-technologie-led
4. Melexis. Fact page; LED, Power supply/ LED drivers [online]. [vid. 2015-08-03]. Dostupné z: http://www.melexis.com/Assets/Fact-page-LED-Power-supply-LED-drivers-5297.aspx
5. OSRAM. LED Information Base [online]. [vid. 2015-08-03]. Dostupné z: https://apps.osram-os.com
6. Lumileds. Automotive Application Briefs. [online]. [vid. 2015-08-03]. Dostupné z: http://www.lumileds.com/support/documentation/automotive-application-briefs
7. SEOUL SEMICONDUCTOR. LED Technology. [online]. [vid. 2015-08-03]. Dostupné z: http://www.seoulsemicon.com/en/html/technical/ledtech01.asp
8. Luxeon Star LEDs. How do I determine what size of heat sink I need [online]. [vid. 2015-08-03]. Dostupné z: http://support.luxeonstar.com/customer/portal/articles/179490-how-do-i-determine-what-size-of-heat-sink-i-need-includes-heat-sink-calculator-
9. MechaTronix. How to calculate your LED heat sink [online]. [vid. 2015-08-03]. Dostupné z: http://www.mechatronix-asia.com/LED_heat_sink_calculation_simulation_thermal_design.html
10. MechaTronix. LED Cooling [online]. [vid. 2015-08-03]. Dostupné z: https://www.youtube.com/user/mechatronixledcooler
Literature - recommended:
1. Automotive Lighting. [online]. [vid. 2015-08-03]. Dostupné z: http://www.al-lighting.com
2. HELLA. [online]. [vid. 2015-08-03]. Dostupné z: http://www.hella.com
3. AFIMO. Seriál LED osvětlení [online]. [vid. 2015-08-03]. Dostupné z: http://www.afimocz.cz/serial-led-osvetleni-1-dil-technologie-led
4. Melexis. Fact page; LED, Power supply/ LED drivers [online]. [vid. 2015-08-03]. Dostupné z: http://www.melexis.com/Assets/Fact-page-LED-Power-supply-LED-drivers-5297.aspx
5. OSRAM. LED Information Base [online]. [vid. 2015-08-03]. Dostupné z: https://apps.osram-os.com
6. Lumileds. Automotive Application Briefs. [online]. [vid. 2015-08-03]. Dostupné z: http://www.lumileds.com/support/documentation/automotive-application-briefs
7. SEOUL SEMICONDUCTOR. LED Technology. [online]. [vid. 2015-08-03]. Dostupné z: http://www.seoulsemicon.com/en/html/technical/ledtech01.asp
8. Luxeon Star LEDs. How do I determine what size of heat sink I need [online]. [vid. 2015-08-03]. Dostupné z: http://support.luxeonstar.com/customer/portal/articles/179490-how-do-i-determine-what-size-of-heat-sink-i-need-includes-heat-sink-calculator-
9. MechaTronix. How to calculate your LED heat sink [online]. [vid. 2015-08-03]. Dostupné z: http://www.mechatronix-asia.com/LED_heat_sink_calculation_simulation_thermal_design.html
10. MechaTronix. LED Cooling [online]. [vid. 2015-08-03]. Dostupné z: https://www.youtube.com/user/mechatronixledcooler
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
N-STG-P full-time study MTS Modern Technologies of Lighting Systems -- GCr 2 Compulsory 2 2 W