Turbomachinery (FSI-LLS)

Academic year 2023/2024
Supervisor: doc. Ing. Jan Fiedler, Dr.  
Supervising institute: all courses guaranted by this institute
Teaching language: Czech
Aims of the course unit:
The course objective is to show students which measures is necessary to take for realisation of physical intention in a real machine and how is the construction of a given machine influenced by changes of conditions (type of medium, demanded power, pressure, temperature etc.) On the other side, students will learn how selected construction variant determines attributes and characteristics of a machine.
Learning outcomes and competences:
The course makes students familiar with the knowledge about engineering usage of physical laws for construction and use of large group of machines. Students will learn which instruments have to be used by an engineer to reach goals in a best way with respect to the user and economical demands.
Prerequisites:
Thermo-mechanics basics. Basics of energy industry.
Course contents:
The course is concerned with the application of fundamental physical laws, above all hydromechanics and thermo-mechanics for the design and utilization of a large group of machines. The basic principle of these machines is transformation of thermal, pressure or potential energy into kinetic energy of fluid and the transfer of that energy to the rotor of the machine, and vice versa. Therefore, substantial parts of the course is focused on interactions between a real fluid flowing around or through bodies. Due to the high speed, relatively small machines reach high power outputs. Turbo-machines are used in a great number of applications and in a very extensive range of working conditions. The explanation on physical principles is accompanied with the design of turbo-machines.
Teaching methods and criteria:
The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.
Assesment methods and criteria linked to learning outcomes:

Course-unit credit: Demonstration of concurrent study of lectured topics and efforts to use the knowledge from lectures in controlled application to simple tasks in the area of design of functional parts of turbomachines. Credit is conditioned by successful completion of the semester test.

Examination: The knowledge of used physical laws and their application in individual types of turbomachines is tested. Structural design of basic functional parts of turbomachines and connection of constructional design and used properties of these machines. Relation of working conditions of turbomachines and their design.

The exam is written, supplementary questions are oral.

Controlled participation in lessons:
Semestral exam.
Type of course unit:
    Lecture  13 × 2 hrs. optionally                  
    Exercise  13 × 2 hrs. optionally                  
Course curriculum:
    Lecture

1. Introduction to turbomachinery
2. Essential equation of turbomachines
3. Shape of blades and flow chanels of turbomachines
4. Aerodynamics of blade cascades
5. Internal losses of turbomachines and them infuence at turbomachine calculation
6. Using turbomachines similarities at calculation turbomachine
7. Turbopump
8. Fans

    Exercise

The content of the exercise is the solution of problems:


1. Recall of Mathematical skills at calculation of turbomachines.


2. Solving of problems at base energy balance of turbomachines and turbosets


3. Solving of problems with velocity triangles


4. Forces calculation on blade


5. Energy field calculation inside turbomachines


6. Calculation of velocity fields and other types of energy before/behind rotor


7. Design of spiral branch and analysis of spiral flow stream; optimal of shape blade


8. Design of radial fans blade; calculation of radial fans casing


9. Estimation of profile cascade properties from shape of profiles; calculation of parameters of blade cascade


10. Design of axial fan profile cascade; calculation of sum of stage losses


11. Selection of optimal type of turbomachines through its specific speed; calculation of fan map


12. Design of fan rotor dimension; emergency run of pump


13. Credit paper

Literature - fundamental:
1. ŠKORPÍK, Jiří. Teorie lopatkových strojů. Vydání druhé. Brno: Akademické nakladatelství CERM, 2022. ISBN 978-80-214-6102-4.
3. Kadrnožka, J.: Tepelné turbíny a turbokompresory I, CERM, Brno 2004
5. JAPIKSE, David. Introduction to turbomachinery, 1997. 2. vydání. Oxford: Oxford University Press, ISBN 0–933283-10-5.
Literature - recommended:
2. MELICHAR, Jan, BLÁHA, Jaroslav, BRADA, Karel. Hydraulické stroje–Konstrukce a provoz, 2002. 1. vydání. Praha: České vysoké učení technické v Praze, ISBN 80–01–02657–4.
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
N-ETI-P full-time study TEP Environmental Engineering -- Cr,Ex 4 Compulsory 2 1 W
N-ETI-P full-time study ENI Power Engineering -- Cr,Ex 4 Compulsory 2 1 W
N-ETI-P full-time study FLI Fluid Engineering -- Cr,Ex 4 Compulsory 2 1 W