Simulation of Technological Processes (FSI-HPR)

Academic year 2024/2025
Supervisor: Ing. Jan Řiháček, Ph.D.  
Supervising institute: ÚST all courses guaranted by this institute
Teaching language: Czech
Aims of the course unit:
 
Learning outcomes and competences:
 
Prerequisites:

Basic knowledge of manufacturing technology and basic computer skills.

Course contents:

The course "Simulation of Technological Processes" follows the course "Computer Aided Technology" and is focused on expanding basic knowledge in the field of numerical modelling with a focus on forming, welding and heat treatment technologies. In the lectures, students are acquainted with the essence of basic numerical methods used in current technical practice and with the use of numerical modelling for solving the issues of forming, welding and heat treatment technologies. The practical part – exercises aim primarily at the general principles of the creation of computational models, designed for the analysis of technological processes. Thus, students gain knowledge for independent orientation in the problems of numerical simulations and analyse.

Teaching methods and criteria:
 
Assesment methods and criteria linked to learning outcomes:
 
Controlled participation in lessons:
 
Type of course unit:
    Lecture  13 × 2 hrs. optionally                  
    Computer-assisted exercise  13 × 2 hrs. compulsory                  
Course curriculum:
    Lecture

1. Numerical modelling of forming technologies (basic approaches; inclusion of time and nonlinearities in the calculation; use of various numerical methods)


2. Finite element method in ANSYS software environment (basic principle; solution of forming tasks in ANSYS software; basic stages of preprocessing and postprocessing)


3. Finite difference method (basic principle; possibilities of computational mesh; discretization of space and time; heat conduction equation - illustration of the use of MKD for temperature field distribution)


4. Discrete element method (basic principle; hard and soft method; possibilities of discretization and interconnection of elements)


5. SPH method (basic principle; weight function and smooth distance; implementation of boundary conditions)


6. Boundary element method (basic principle; fundamental solution; possibilities of discretization)


7. Finite volume method (introduction to hydrodynamics; basic principle of FVM; possibilities of discretization; solution of interface between two medium types)


8. Numerical simulation of heat treatment (goals of numerical analyses; simulation of welding in FEM environment)


9. Introduction to numerical simulation of welding (basic quantities; inputs and outputs of numerical analyses)


10. Methods of welding problems solving (transient method; Macro Bead method; locally global method; contraction method)


11. Thermal processes in welding and their mathematic modelling (structure and properties of welded joint and HAA; temperature field; temperature cycle)


12. Tension and deformation during welding (causes, modelling and measuring)


13. Application of numerical modelling in the manufacturing process (practical examples)

    Computer-assisted exercise

1. The basic workflow of the forming analysis in ANSYS software


2. Solving of specified forming problem in the simulation software


3. Solving of specified forming problem in the simulation software


4. Solving of specified forming problem in the simulation software


5. Assignment and solving of the project


6. Solving of the given project


7. Submission and evaluation of the given project


8. Introduction to numerical simulation of welding in SYSWeld software


9. Solution of specified welding problem in the simulation software


10. Solution of specified welding problem in the simulation software


11. Solution of specified welding problem in the simulation software


12. Solution of specified welding problem in the simulation software


13. Written test, graded course-unit credit

Literature - fundamental:
1. ŘIHÁČEK, Jan. FSI VUT v Brně. Počítačová podpora technologie: část tváření. Brno, 2015, 29 s. Sylabus.
2. ŘIHÁČEK, Jan. FSI VUT v Brně. Simulace tvářecích procesů v softwaru FormFEM: řešené příklady. Brno, 2015, 94 s.
5. VANĚK, Mojmír. FSI VUT v Brně. Počítačová podpora technologie: část svařování. Brno, 2015. Sylabus.
6. VANĚK, Mojmír. FSI VUT v Brně. Počítačová podpora technologie: příklady ze simulací svařování a tepelného zpracování. Brno, 2015.
Literature - recommended:
1. VALBERG, Henry S. Applied metal forming including FEM analysis. New York: Cambridge University Press, 2010. ISBN 978-051-1729-430.
2. PETRUŽELKA, Jiří a Jiří HRUBÝ. Výpočetní metody ve tváření. 1. vyd. Ostrava: Vysoká škola báňská - Technická univerzita, Strojní fakulta, 2000. ISBN 80-7078-728-7.
3. GOLDAK, John A. a Mehdi AKHLAGHI. Computational welding mechanics. New York, USA: Springer, 2005, 321 s. ISBN 03-872-3287-7.
6. ESI GROUP. PAM-STAMP 2015: User´s Guide. 2015, 1080 s
7. FURRER, D. U. a S. L. SEMIATIN. ASM Handbook Volume 22B: Metals process simulation. Materials Park, Ohio: ASM International, 2010. ISBN 978-1-61503-005-7.
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
N-STG-P full-time study STM Manufacturing Technology and Management in Industry -- GCr 4 Compulsory-optional 2 2 S
N-STG-P full-time study STG Manufacturing Technology -- GCr 4 Compulsory-optional 2 2 S