Energy Harvesting and Smart Materials (FSI-RAE-A)

Academic year 2025/2026
Supervisor: doc. Ing. Zdeněk Hadaš, Ph.D.  
Supervising institute: ÚMTMB all courses guaranted by this institute
Teaching language: English
Aims of the course unit:
 
Learning outcomes and competences:
 
Prerequisites:
 
Course contents:

The course “Energy Harvesting and Smart Materials” deals with introduction of unique ways of the energy generating from surroundings. Currently remote electronics, autonomous low power devices and wireless sensors are used in Industry 4.0 applications. One possibility to overcome energy limitations of batteries is to harvest ambient energy from the environment. The ambient energy is available in the form of radiation, thermal energy and mechanical energy of the environment. The course deals with Smart Materials, metamaterials and mainly focused on energy harvesting from mechanical energy of vibrations, shocks, deformation, human behaviour etc., and simulation modelling of energy harvesting systems.

Teaching methods and criteria:
 
Assesment methods and criteria linked to learning outcomes:
 
Controlled participation in lessons:
 
Type of course unit:
    Lecture  13 × 1 hrs. optionally                  
    Laboratory exercise  13 × 2 hrs. compulsory                  
Course curriculum:
    Lecture 1. Introduction of energy harvesting technologies
2. Photovoltaic cells
3. Thermoelectric generators
4. Electro-mechanical conversion – physical principles
5. Electro-mechanical conversion – analysis of ambient vibration energy
6. Electromagnetic principle
7. Design of electromagnetic generators
8. Mechatronic system of energy harvesters
9. Piezoelectric principle
10. Piezoelectric materials and other SMART materials
11. Energy storage elements, Electronics – power management
12. Wireless sensor networks
13. MEMS
    Laboratory exercise 1. Analysis of ambient energy for energy harvesting
2. Model of solar cells a thermoelectric generators
3. Thermoelectric module model
4. Vibration measurement and analysis
5. Mechanical energy analysis
6. Simulation and modelling of electromagnetic conversion
7. Model of magnetic field
8. Simulation modelling of complex electromagnetic generator
9. Measurement of energy harvesting devices
10. Model of piezoelectric elements and basic analysis
11. Model of piezoelectric generator
12. Model of power management electronics
13. Presentation of final projects
Literature - fundamental:
1. Shashank Priya, Daniel J. Inman: Energy Harvesting Technologies, Springer US, 2009
2. Olfa Kanoun: Energy Harvesting for Wireless Sensor Networks: Technology, Components and System Design, De Gruyter Oldenbourg, 2018.
3. A. K. Batra, Almuatasim Alomari: Power Harvesting Via Smart Materials, SPIE 2017.
4. Fiala, P., Kadlecová, E.: Modelování elektromagnetických polí, FEKT VUT v Brně, 2005.
5. Grepl, R.: Modelování mechatronických systémů v Matlab/SimMechanics, BEN, 2007.
Literature - recommended:
1. Tom J. Kaźmierski (Editor), Steve Beeby (Editor): Energy Harvesting Systems: Principles, Modeling and Applications, Springer, 2011.
2. Mukherjee, S., et al.: AmIware Hardware Technology Drivers of Ambient Intelligence, Philips Research Book Series Vol. 5, Springer Netherlands, 2006.
3. Adams, Thomas M., Layton, Richard A.: Introductory MEMS Fabrication and Applications, 2010.
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
BPC-EMU full-time study --- no specialisation -- GCr 5 Compulsory-optional 1 3 W
N-IMB-P full-time study IME Engineering Mechanics -- GCr 5 Compulsory-optional 2 2 W
N-IMB-P full-time study BIO Biomechanics -- GCr 5 Compulsory-optional 2 2 W
N-MET-P full-time study --- no specialisation -- GCr 5 Compulsory-optional 2 2 W
N-AIŘ-P full-time study --- no specialisation -- GCr 5 Elective 2 2 W
N-ENG-Z visiting student --- no specialisation -- GCr 5 Recommended course 2 1 W