Academic year 2025/2026 |
Supervisor: | Ing. Jan Řiháček, Ph.D. | |||
Supervising institute: | ÚST | |||
Teaching language: | Czech | |||
Aims of the course unit: | ||||
Aim of the course is to acquaint students with the possibilities of experimental and theoretical evaluation of production processes using computer aid and with basics of work in particular areas of this problematics. The students will have a view of what they can expect from computer aid results in practice. The course also aims to acquire the skills necessary to basic work with simulation software in these areas.
Students will be acquainted with theory as well as with the latest knowledge in the field of 3D optical measurement, virtual manufacturing and numerical simulations. They will acquire necessary skills for formulation and solution of computational models in the areas of forming and welding. |
||||
Learning outcomes and competences: | ||||
  | ||||
Prerequisites: | ||||
Basic knowledge of engineering technology and basic computer skills. |
||||
Course contents: | ||||
The course acquaints students with the possibilities of computer aid in various areas of manufacturing design, especially with the use of 3D optical measurement and numerical simulation as tools for analysis and optimization of technological processes. In the lectures, students are introduced to the nature of the use of computer aid and numerical simulations for solving stress-strain and temperature problems, which are closely related to the issues of forming and welding technologies. Exercises aim primarily at practical calculations and mastering the main principles of computational models creating. Therefore, students will gain an orientation in the field of numerical simulations and analyses using the finite element method. |
||||
Teaching methods and criteria: | ||||
  | ||||
Assesment methods and criteria linked to learning outcomes: | ||||
The course-unit credit is awarded on condition of having attended all seminars and worked out partial tasks. The final exam will be composed of written and oral part. It is classificated by using the ECTS grading scale.
Attendance in lectures is recommended. Attendance in exercises is compulsory. The attendance to the seminar is regularly checked and the participation in the lesson is recorded. In case, that the lesson does not possible to participate, the teacher may in justified cases set an additional assignment. |
||||
Controlled participation in lessons: | ||||
  | ||||
Type of course unit: | ||||
Lecture | 13 × 2 hrs. | optionally | ||
Computer-assisted exercise | 13 × 2 hrs. | compulsory | ||
Course curriculum: | ||||
Lecture | 1. Possibilities of modelling of forming processes (similarity, experimental and theoretical modelling) 2. Experimental modelling with computer aid (experimental modelling using 3D optical systems; basics of photogrammetry and stereoscopy) 3. Possibilities of numerical modelling (basic principle of numerical modelling; 0D, 1D, 2D and 3D simulations, basic stages of work with simulation software) 4. Finite element method (basic principle; illustration of FEM algorithm for strain-stress problem; FEM equations) 5. Nonlinear FEM problems (geometric, contact and material nonlinearity; solution algorithms) 6. FEM mesh (basic types of body elements; special types of FEM elements, evaluation of mesh quality) 7. Material models in FEM (description of hardening curve; tests of mechanical properties; elastic plastic and hyperelastic models) 8. Numerical simulation of hot forming (description of heat transfer; heat transfer coefficient; thermal conductivity; change of mechanical properties) 9. Numerical simulation of forming at higher strain rates (change of mechanical properties of materials; implicit/explicit approaches to solutions; examples of applications) 10. Modelling of formed material failure (physical and virtual failure models) 11. Numerical simulation of welding (goals of numerical analyses of welding, welding simulation in FEM) 12. Simulation of thermal processes (basic quantities for the description of heat transfer; simulation of thermal action on the material) 13. Application of numerical modelling in the manufacturing process (practical applications) |
|||
Computer-assisted exercise | 1. Introduction to software for 3D optical measurements 2. Evaluation of tensile test using 3D optical measurement 3. Evaluation of tensile test using 3D optical measurement 4. Introduction to selected software for forming simulation 5. Solving of specified sheet metal forming problem in the simulation software 6. Solving of specified sheet metal forming problem in the simulation software 7. Solving of specified sheet metal forming problem in the simulation software 8. Solving of specified bulk forming problem in the simulation software 9. Solving of specified bulk forming problem in the simulation software 10. Solving of specified bulk forming problem in the simulation software 11. Introduction to selected software for welding simulation 12. Solution of specified welding problem in the simulation software 13. Evaluation of the given project, course-unit credit |
|||
Literature - fundamental: | ||||
1. ŘIHÁČEK, Jan. FSI VUT v Brně. Počítačová podpora technologie: část tváření. Brno, 2015, 29 s. Sylabus. | ||||
2. ŘIHÁČEK, Jan. FSI VUT v Brně. Simulace tvářecích procesů v softwaru FormFEM: řešené příklady. Brno, 2015, 94 s. | ||||
3. VANĚK, Mojmír. FSI VUT v Brně. Počítačová podpora technologie: část svařování. Brno, 2015. Sylabus. | ||||
4. VANĚK, Mojmír. FSI VUT v Brně. Počítačová podpora technologie: příklady ze simulací svařování a tepelného zpracování. Brno, 2015. | ||||
Literature - recommended: | ||||
1. VALBERG, Henry S. Applied metal forming including FEM analysis. New York: Cambridge University Press, 2010. ISBN 978-051-1729-430. | ||||
2. PETRUŽELKA, Jiří a Jiří HRUBÝ. Výpočetní metody ve tváření. 1. vyd. Ostrava: Vysoká škola báňská - Technická univerzita, Strojní fakulta, 2000. ISBN 80-7078-728-7. | ||||
3. GOLDAK, John A. a Mehdi AKHLAGHI. Computational welding mechanics. New York, USA: Springer, 2005, 321 s. ISBN 03-872-3287-7. | ||||
10. FURRER, D. U. a S. L. SEMIATIN. ASM Handbook Volume 22B: Metals process simulation. Materials Park, Ohio: ASM International, 2010. ISBN 978-1-61503-005-7. |
The study programmes with the given course: | |||||||||
Programme | Study form | Branch | Spec. | Final classification | Course-unit credits | Obligation | Level | Year | Semester |
N-STG-P | full-time study | STM Manufacturing Technology and Management in Industry | -- | Cr,Ex | 4 | Compulsory | 2 | 1 | W |
N-STG-P | full-time study | MTS Modern Technologies of Lighting Systems | -- | Cr,Ex | 4 | Compulsory | 2 | 1 | W |
N-STG-P | full-time study | STG Manufacturing Technology | -- | Cr,Ex | 4 | Compulsory | 2 | 1 | W |
Faculty of Mechanical Engineering
Brno University of Technology
Technická 2896/2
616 69 Brno
Czech Republic
+420 541 14n nnn
+420 726 81n nnn – GSM Telef. O2
+420 604 07n nnn – GSM T-mobile
Operator: nnnn = 1111