Structure and Properties of Advanced Materials (FSI-TVN)

Academic year 2025/2026
Supervisor: prof. Mgr. Miroslav Černý, Ph.D.  
Supervising institute: ÚFI all courses guaranted by this institute
Teaching language: Czech
Aims of the course unit:
 
Learning outcomes and competences:
 
Prerequisites:

Basic knowledge obtain in courses Introduction to Material Science and Engineering – BUM and Theoretical Mechanics and Continuum Mechanics – TMM

Course contents:
 
Teaching methods and criteria:
 
Assesment methods and criteria linked to learning outcomes:
 
Controlled participation in lessons:
 
Type of course unit:
    Lecture  13 × 1 hrs. optionally                  
    Exercise  13 × 1 hrs. compulsory                  
    Computer-assisted exercise  13 × 1 hrs. compulsory                  
Course curriculum:
    Lecture Structure of ideal crystals and atomic bonding, defects of atomic structure
Theory of deformation and fracture
Fracture mechanics
- cyclic plasticity
- micromechanics of fracture
Nanomaterials:
- carbon fibers, layers and tubes
- magnetic nanomaterials
ultra-fine grained materials
Shape-memory alloys: shape-memory effect, principles of mechatronic actuators
Composite materials: fiber reinforced composites and laminates, particle-reinforced composites
    Exercise

Description of atomic bonds, empirical interatomic potentials
Defects in crystal lattice, theory of dislocations
Fracture mechanics:
- stress- strain field at the crack tip
- quantitative fractography of fatigue fracture
Nanomaterials and shape-memory alloys:
- deformation micromechanisms of ultra-fine grained materials

    Computer-assisted exercise

Modeling deformation and response of crystals



  • models of ideal crystal structure

  • semiempirical interatomic potentials

  • ab initio methods, molecular dynamics


Selected advanced topics:



  • theoretical strength of carbon nanotubes

  • elasticity of ideal crystals

  • vibrational spectra of molecules

Literature - fundamental:
1. J. Pokluda, F. Kroupa, L. Obdržálek, Mechanické vlastnosti a struktura pevných látek, PC-DIR 1994
2. Kittel,C: Kittel′s Introduction to Solid State Physics 8th Edition, Wiley, 2018  
Literature - recommended:
1. BELLOUARD Y.: Microrobotics and Microdevices based on Shape-Memory Alloys. In: Smart Materials, Columbus, Ohio 2003, pp.620-644
2. Suresh S.: Fatigue of Materials. Cambridge, UK: Cambridge University Press; 1998.
3. Pokluda J, Šandera P. Micromechanisms of Fracture and Fatigue. In a Multiscale Context. London, UK: Springer; 2010.
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
B-FIN-P full-time study --- no specialisation -- Cr,Ex 3 Compulsory-optional 1 2 S