Academic year 2025/2026 |
Supervisor: | doc. Ing. Pavel Škrabánek, Ph.D. | |||
Supervising institute: | ÚAI | |||
Teaching language: | English | |||
Aims of the course unit: | ||||
To acquaint students with basic principles of interaction of radiation with matter, with instrumentation for applications of computer vision in industry, and with image processing methods used in machine vision applications. At the end of the course, the students will be able to:
|
||||
Learning outcomes and competences: | ||||
  | ||||
Prerequisites: | ||||
  | ||||
Course contents: | ||||
  | ||||
Teaching methods and criteria: | ||||
  | ||||
Assesment methods and criteria linked to learning outcomes: | ||||
Knowledge and skills are verified by credit and examination. Credit requirements: elaboration of a given practical task. Attendance at lectures is recommended, while attendance at practical sessions is mandatory. Practical sessions that a student is unable to attend in the regular term can be made up during a substitute term. The exam is oral and covers the entire course material. |
||||
Controlled participation in lessons: | ||||
  | ||||
Type of course unit: | ||||
Lecture | 13 × 2 hrs. | optionally | ||
Laboratory exercise | 13 × 2 hrs. | compulsory | ||
Course curriculum: | ||||
Lecture |
|
|||
Laboratory exercise |
|
|||
Literature - fundamental: | ||||
1. SZELISKI, Richard. Computer Vision: Algorithms and Applications [online]. 1. London: Springer, 2010 [cit. 2019-02-19]. Texts in computer science. ISBN 978-1-84882-935-0. Dostupné z: https://www.springer.com/gp/book/9781848829343 | ||||
2. BATCHELOR, Bruce G. Machine vision handbook: with 1295 figures and 117 tables [online]. 1. London: Springer, [2012] [cit. 2019-02-19]. ISBN 978-1-84996-169-1. Dostupné z: https://link.springer.com/referencework/10.1007%2F978-1-84996-169-1 | ||||
3. MCMANAMOM, Paul. Field Guide to Lidar. 1. Bellingham, Washington 98227-0010 USA: SPIE, 2015. ISBN 9781628416541. | ||||
4. A Practical Guide to Machine Vision Lighting. Automated Test and Automated Measurement Systems - National Instruments [online]. National Instruments, 2019, 30. ledna 2017 [cit. 2019-02-19]. Dostupné z: http://www.ni.com/white-paper/6901/en/ | ||||
Literature - recommended: | ||||
1. HAVEL, Otto. Strojové vidění I: Principy a charakteristiky. Automa. Automa – časopis pro automatizační techniku, s. r. o., 2008, 14(1), 42-45. ISSN 1210-9592. | ||||
2. HAVEL, Otto. Strojové vidění II: Úlohy, nástroje a algoritmy. Automa. Automa – časopis pro automatizační techniku, s. r. o., 2008, 14(2), 54-56. ISSN 1210-9592. | ||||
3. HAVEL, Otto. Strojové vidění III: Kamery a jejich části. Automa. Automa – časopis pro automatizační techniku, s. r. o., 2008, 14(3), 42-44. ISSN 1210-9592. | ||||
4. HAVEL, Otto. Strojové vidění IV: Osvětlovače. Automa. Automa – časopis pro automatizační techniku, s. r. o., 2008, 14(4), 47-49. ISSN 1210-9592. |
The study programmes with the given course: | |||||||||
Programme | Study form | Branch | Spec. | Final classification | Course-unit credits | Obligation | Level | Year | Semester |
N-AIŘ-P | full-time study | --- no specialisation | -- | Cr,Ex | 5 | Compulsory | 2 | 1 | S |
N-AIŘ-P | full-time study | --- no specialisation | -- | Cr,Ex | 5 | Compulsory | 2 | 2 | S |
N-ENG-Z | visiting student | --- no specialisation | -- | Cr,Ex | 5 | Recommended course | 2 | 1 | S |
Faculty of Mechanical Engineering
Brno University of Technology
Technická 2896/2
616 69 Brno
Czech Republic
+420 541 14n nnn
+420 726 81n nnn – GSM Telef. O2
+420 604 07n nnn – GSM T-mobile
Operator: nnnn = 1111