Aircraft Materials and Technology (FSI-OLR-A)

Academic year 2020/2021
Supervisor: doc. Ing. Miloslav Petrásek, CSc.  
Supervising institute: all courses guaranted by this institute
Teaching language: English
Aims of the course unit:
The aim of the course Aircraft Materials is to inform students of present state in the area of structural materials for aircraft structures and to provide them with methodical and objective knowledge.
Learning outcomes and competences:
The course Aircraft Materials makes students familiar with representative aircraft structural materials as well as with their optimal use. Students will be able to evaluate different material variants of aircraft structures according their strength, lifetime and damage tolerance.
Prerequisites:
Basic knowledge of relations between composition, processing, structure and properties of structural materials. Basic terminology of physical metallurgy and material limit states.
Course contents:
Relationships between compositions,processing effects, microstructures,properties and typical applications of selected aircraft materials. Special material requirements. Aluminium alloys, magnesium alloys, titanium alloys, high strength steels, nickel-base and cobalt-base superalloys, fibre and particle composites, nanocomposites and smart systems, structural polymers,structural ceramics, wood and plywood for aircraft structures. New research and development, international material standards and equivalents.
Teaching methods and criteria:
The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures. Teaching is suplemented by practical laboratory work.
Assesment methods and criteria linked to learning outcomes:
The course-unit credit requirements: 90% attendance at seminars. It is also necessary to submit completed and sophisticated computational exercises. Obtaining the credit is a condition for admission to the exam. The exam is written.
Controlled participation in lessons:
Attendance at seminars is compulsory. In case of justified absence, the missed seminar may be compensated with an individual assignment. Continuous checking is made by means of written tests. In case of a failure, it is required to repeat the test.
Type of course unit:
    Lecture  13 × 3 hrs. optionally                  
    Laboratory exercise  2 × 1 hrs. compulsory                  
    Exercise  11 × 1 hrs. compulsory                  
Course curriculum:
    Lecture 1.Aircraft materials and strength conceptions
2.Characteristics of aluminium alloys for aircraft structures. Standards
3.Wrought aluminium alloys. Properties, application, heat treatment
4.Casting aluminium alloys for aircraft structures. Properties, application, heat treatment
5.Magnesium alloys for aircraft structures
6.Titanium alloys for aircraft structures
7.Typical aircraft steels
8.High temperature materials. Nickel alloys, cobalt alloys
9.Fibre reinforced composite materials.
10.Discoutinously reinforced composite materials.Ceramics and ceramic composites.
11. Nanocomposites and smart systems.
12.Structural plastics for aircraft structures. Sandwich materials.
13.Wood and plywood for light aeroplanes
    Laboratory exercise 12.Testing of aluminium alloys
13.Comparison between properties of metals and composites
    Exercise 1.Standardization of aircraft materials
2.Standards of aluminium alloys
3.Choice of material for given airframe component
4.Relationship between microstructure and properties - DAS.
5.Test No 1
6.Design of airframe structure from Mg alloy
7.Schaeffler diagram of high alloy steels
8.Test No 2
9.Properties of high temperature alloys
10.Properties of wood for light aeroplanes
11.Test No 3
Literature - fundamental:
1. Cenek,M.-Jeníček,L.: Nauka o materiálu I,3. svazek, Neželezné kovy,Academia,Praha 1973
2. Hussey B., Wilson J.: Light Alloys. Directory and databook. Chapman&Hall, 1998
3. Middleton,D.H.: Composite materials in aircraft structures,Longman Group, 1990
4. ASM Handbook, Volume 21, Composites, ASM International, 2002
5. ASM Handbook, Vol. 02 Properties nad Selection of Nonferrous Alloys
6. Michna a kol.: Encyklopedie hliníku
7. Vlot A., Gunnink J. W.: Fibre Metal Laminates, ISBN 1-4020-0038-3
8. ASM Handbook Vol. 01 Properties and Selection: Irons, Steels and High Performance Alloys
9. F.C.Campbell: Manufacturing Technology for Aerospace Structural Materials. Elsevier, 2006. ISBN-13: 978-1-85-617495-4.
Literature - recommended:
1. Ustohal,V.: Letecké materiály,VUT Brno,1988
2. Michna, Š. a kol.: Encyklopedie hliníku, Prešov 2005, ISBN 80-89041-88-4
3. Baker, A.: Composite materials for aircraft structures, AIAA 2004
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
N-AST-A full-time study --- no specialisation -- Cr,Ex 6 Compulsory 2 1 W
M2E-A full-time study M-IND Industrial Engineering -- Cr,Ex 6 Compulsory 2 1 W