Fundamentals of Dependability Theory (FSI-RZT)

Academic year 2020/2021
Supervisor: doc. Ing. Tomáš Návrat, Ph.D.  
Supervising institute: ÚMTMB all courses guaranted by this institute
Teaching language: Czech
Aims of the course unit:
The objective of the course is to make students familiar with elementary terms in the Theory of dependability and with the most significant methods of active dependability provision of structures in their life periods such as research, development, production and utilization. The emphasis is put on most significant characters, i.e. as safety, durability and reliability in the probability conception.
Learning outcomes and competences:
Students will be acquainted with modern methods of dependability assessment of products in various periods of their lifetime. The main attention is paid to the use of the Theory of dependability in limit states of structures and to the assessment of their reliability and durability from the probability point of view.
Prerequisites:
Basic knowledge of probability theory, Boole´s algebra and mathematical statistics.
Course contents:
The course is concerned with the following topics: Significance of the quality (and its most important parameter - dependability) for successful use of the product on the market.
Definition of the basic terms. Survey of the most important methods for securing dependability of technical systems. Application in the assessment of the limit states of structures - interference theory, approximation methods FORM and SORM, simulation-based methods. Operational dependability.
Teaching methods and criteria:
The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.
Assesment methods and criteria linked to learning outcomes:
Graded course-unit credit requirements: active participation in seminars, well-elaborated assignments, solving additional assignments due to absence. Seminar tutor will specify these conditions in the first week of semester.
Course unit credist will be awarded based on evaluation of the project.
Controlled participation in lessons:
Attendance at practical training is obligatory. More absences are compensated by additional assignments according to the instructions of the tutor.
Type of course unit:
    Lecture  13 × 2 hrs. optionally                  
    Computer-assisted exercise  13 × 2 hrs. compulsory                  
Course curriculum:
    Lecture 1. Quality and dependability – meaning and guarantee, elementary terms.
2. Conditions and actions of products. Reliability and durability indexes.
3. Dependability theory in limit states of structures. Design conceptions.
4. Methods for dependability assessment. Variability of input quantities.
5. Theory of interference – static model.
6. Theory of interference – dynamic model. Classification of methods.
7. Approximate methods FORM and SORM. Methods of simulation.
8. Systems dependability analysis – resources, general procedure.
9. Reliability block diagrams.
10. Methods FMEA/FMECA
11. Fault-tree and event-tree analysis.
12. Markov´s analysis.
13. Dependability testing. Service dependability
    Computer-assisted exercise 1. Characteristics of random variables. Discrete distributions in dependability.
2. Continuous distributions in dependability. The Poisson and exponential distributions.
3. The Weibull three- and two-parameter distributions.
4. The Gaussian distribution.
5. Characteristics of combination random quantities.
6. Probability density and cumulative distribution function for combination of random
quantities (system MAPLE).
7. (completion)
8. Interference theory and systems MAPLE, MATLAB.
9. Probabilistic analysis in system ANSYS.
10. Probabilistic analysis in system ANSYS Workbench.
11. Presentation of selected programm systems focused on dependability.
12. (completion)
13. Graded course-unit credit.
Literature - fundamental:
1. Villemeur, A.:: Reliability, Availability, Maintainability and Safety, John Wiley&Sons, New York 1992
2. O´Connor, P.D.T: Practical Reliability Engineering, John Wiley&Sons, New York 1995
3. Sundararajan C.R.: Probabilistic Structural Mechanics Handbook,Chapman&Hall, New York 1995
Literature - recommended:
1. Holub R. - Vintr Z.: Spolehlivost letadlové techniky. VUT FSI 2001
2. Holub, R.:: Zkoušky spolehlivosti, VA Brno 1992
3. Mykiska, A.: Spolehlivost technických systémů, ČVUT Praha 2000
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
M2A-P full-time study M-IMB Engineering Mechanics and Biomechanics -- GCr 5 Compulsory 2 2 W