Theory of Internal Combustion Engines (FSI-QTS)

Academic year 2021/2022
Supervisor: prof. Ing. Josef Štětina, Ph.D.  
Supervising institute: ÚADI all courses guaranted by this institute
Teaching language: Czech
Aims of the course unit:
Provide knowledge for practical, theoretical, experimental and scientific activity in area of combustion engines.
Learning outcomes and competences:
Students learn individual concepts from the theory of internal combustion engines, get acquainted with the basic systems of internal combustion engines, determine their characteristic dimensions and gain knowledge about computational models of these systems.
Prerequisites:
Prerequisites and co-requisites The student must have knowledge corresponding to subjects of theoretical basis of bachelor study in the field of engineering education, especially thermomechanics.

Links to other subjects:
compulsory co-requisite: Tractors [QT]

Course contents:
Learning outcomes of the course unit The subject acquaints students with knowledge of internal combustion engine theory with a view to thermodynamics of working cycles, combustion and heat transfer.
Teaching methods and criteria:
The course is taught through lectures explaining the basic principles and theory of the discipline. Teaching is suplemented by practical laboratory work.
Assesment methods and criteria linked to learning outcomes:
Credit is conditioned by active participation in exercises, proper elaboration of reports and fulfillment of conditions of control tests. The exam verifies the knowledge gained in lectures and seminars, it is written including the test and can have an oral part verifying the knowledge.
Controlled participation in lessons:
Seminars are obligatory, checked by a teacher. The way of compensation of missed lessons (in justified cases) is solved individually with the course guarantee person.
Type of course unit:
    Lecture  13 × 3 hrs. optionally                  
    Laboratory exercise  13 × 2 hrs. compulsory                  
Course curriculum:
    Lecture 01. Thermodynamics cycles
02. Cycles of reciprocating internal combustion engines
03. Fuel for internal combustion engines, thermochemistry
04 Supercharging of internal combustion engines, compressors and turbines theory
05 Cycles real combustion engines and their comparison with the ideal cycle
06. Energy conversion efficiency of internal combustion engines
07. Engine operating characteristics, measurements and their use
08. Intake and exhaust processes, Mixture preparation in SI engines
09 SI engine ignition, combustion and Knock
10. Diesel engine: injection
11 Diesel engine: ignition and combustion
12. Control of combustion engines and its optimization
13. Emissions combustion engines and methods to reduce them
    Laboratory exercise 01. Rules of work in laboratories and measurement of internal combustion engines. Safety.
02. Testing of internal combustion engines.
03. Measurements on a cylindrical test room.
04. External speed characteristic.
05. Basic calculations of MATLAB internal combustion engine cycles.
06. Modeling of real cycles in GT-SUITE.
07. Measurement of emissions.
08. Indications.
09. Detonation combustion.
10. Optimization of richness, ignition advance.
11. Measurement emissions.
12. Mechanical and volume efficiency.
13. Credit test, evaluation of papers.
Literature - fundamental:
1. TAYLOR, Charles Fayette. The internal-combustion engine in theory and practice. 2nd ed., rev. Cambridge, Mass.: M.I.T. Press, 1985. ISBN 978-0-262-20051-6.
2. CATON, J. A. An introduction to thermodynamic cycle simulations for internal combustion engines. Chichester, West Sussex: Wiley, [2015]. ISBN 978-111-9037-569.
3. HIERETH, Hermann a P. H. W. PRENNINGER. Charging the internal combustion engine. New York: Springer, c2007. ISBN 978-3-211-33033-3.
Literature - recommended:
1. STONE, Richard. Introduction to internal combustion engines. 4th ed. Basingstoke: Palgrave Macmillan, c2012. ISBN 978-0-230-57663-6.
2. MACEK, Jan. Spalovací motory. 2. vyd. V Praze: České vysoké učení technické, 2012. ISBN 978-80-01-05015-6.
3. KIRKPATRICK, Allan T. a Colin R. FERGUSON. Internal combustion engines: applied thermosciences. Third. United Kingdom: John Wiley, 2016. ISBN 978-1-118-53331-4.
4. HIERETH, Hermann a P. H. W. PRENNINGER. Charging the internal combustion engine. New York: Springer, c2007. ISBN 978-3-211-33033-3.
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
N-ADI-P full-time study --- no specialisation -- Cr,Ex 6 Compulsory 2 1 W