Aeroplane Propellers (FSI-OT0)

Academic year 2023/2024
Supervisor: Ing. Robert Popela, Ph.D.  
Supervising institute: all courses guaranted by this institute
Teaching language: Czech
Aims of the course unit:
Students will gain basic information on simple methods of aerodynamic design for aeroplane propellers, low pressure axial compressors, wind power propellers and information on helicopter rotors.
Learning outcomes and competences:
Students will gain the knowledge how to compute and design an aeroplane propeller, low pressure axial compressor and propeller for a wind power station from the aerodynamic point of view. Motion of rotor blades of helicopters will be described too.
Prerequisites:
Basic knowledge of mathematics, differential and integral calculus, ordinary differential equations.
Basic knowledge of physics, mechanics, statics and dynamics.
Course contents:
Theory of ideal propulser, efficiency of propeller. Aerodynamic characteristics of propellers. Vortex theory of propellers, design of propeller, calculation of aerodynamics characteristics. Constant pitch and constant speed propellers. Low pressure propeller ventilator. Wind power propellers. Basic theory of helicopter rotor, description of rotor blades, control of helicopter.
Teaching methods and criteria:
The course is taught through lectures explaining the basic principles and theory of the discipline.
Assesment methods and criteria linked to learning outcomes:
A course unit credit is awarded on the basis of checked presence at lectures. Presence at 10 lectures is required at least.
Controlled participation in lessons:
A course unit credit is not awarded unless the presence at lectures is less then 10. In the case of a long term illness (or similar cases) small part of lectures (max. 2 lectures) may be compensated by consultation and home study.
Type of course unit:
    Lecture  13 × 2 hrs. optionally                  
Course curriculum:
    Lecture Ideal propulser theory
Efficiency of a propulser
Aerodynamic characteristics of a propeller
Mutual influence of propeller and airplane
Vortex theory of propellers
Optimization of propellers, basic methods
Design of a propeller, calculation of a propeller characteristics, constant speed propeller
Low pressure duct fan, optimized design
Propeller wind power stations, problems related to wind energy utilization
Design of propeller for wind power station
Propeller's noise, possibilities of propeller noise reduction
Theory of helicopter rotor
Movement of rotor blades and their control during forward flight and zero speed
Literature - fundamental:
1. Doc. Jiří Švéda: Teotie vrtulí a vrtulníků, , 0
Literature - recommended:
1. Glauert,H: Airplane Propellers. In: Durand, W.F.Aerodynamic Theory, Vol.IV California Institute of Technology, USA
2. Alexandrov: Letecké vrtule
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
N-LKT-P full-time study STL Aircraft Design -- Cr 2 Elective 2 1 W
N-LKT-P full-time study TLT Airtransport and Airport Technology -- Cr 2 Elective 2 1 W