Systems, Control and Mechatronics of Vehicles (FSI-QE1)

Academic year 2024/2025
Supervisor: doc. Ing. Pavel Kučera, Ph.D.  
Supervising institute: ÚADI all courses guaranted by this institute
Teaching language: Czech
Aims of the course unit:

The aim of the course Systems, Control and Mechatronics of Vehicles is to acquaint students with contemporary trends in the area of vehicle control systems. The aim of the course is to achieve basic knowledge of the given problems so that students are able to apply them in their profession and orient themselves in the wide possibilities of contemporary development in this area of automotive technology.
The course of Systems, Control and Mechatronics of Vehicles enables students to acquire basic theoretical and practical knowledge for realization of development of mechatronic systems and related areas.

Learning outcomes and competences:
 
Prerequisites:

Fundamentals of dynamics mechanisms, fundamentals of vehicle construction , fundamentals of measurement electric quantities, fundamentals of theory electric machines and apparatuses, principles of data processing and transfer, the basics of programming.

Course contents:

The course of Systems, Control and Mechatronics of Vehicles is intended to acquaint students with basic topics in the area of electric vehicle network, electrical circuit simulation, design of electronic control units - ECU, electronic control unit periphery, electronic control unit production, development and testing of mechatronic systems, programming of electronic control unit processors, measurement and data processing, vehicle diagnostics, electric vehicles and autonomous vehicles. An integral part of the course is an introduction to topics such as Industry 4.0, City 4.0, Autonomous Systems and Internet of Things.

Teaching methods and criteria:
 
Assesment methods and criteria linked to learning outcomes:

The conditions for granting credit are active participation in the exercise and processing of protocols for assigned tasks. The exam tests knowledge of the entire material, including practical skills. The exam consists of a written part (the written exam can also be in the form of e-learning) and, if necessary, an oral part. The classification assessment includes: Assessment of work in exercises. The result of the written part of the exam. The result of any oral part of the exam.

Controlled participation in lessons:
 
Type of course unit:
    Lecture  13 × 2 hrs. optionally                  
    Computer-assisted exercise  13 × 2 hrs. compulsory                  
Course curriculum:
    Lecture 1. Introduction to Systems, Control and Mechatronics of Vehicle.
2. Vehicle electronics I.
3. Vehicle electronics II.
4. Simulation of electrical circuits.
5. Design of the Electronic Control Unit - ECU.
6. Production of the Electronic Control Unit – ECU.
7. Programming of the Electronic Control Unit – ECU.
8. Peripherals of the Electronic Control Unit - ECU.
9. Development and testing of vehicle mechatronic systems.
10. Measurement and data processing.
11. Vehicle diagnostics.
12. Electric cars.
13. Autonomous vehicles.
    Computer-assisted exercise

1. Introduction into laboratory exercises, safety regulations.
2. Assembly, measurement and verification of electrical circuits.
3. Basic programming of C language.
4. Basic programming of C++ language.
5. Basic programming of microcontrollers.
6. Creation of control algorithms in Simulink software.
7. PCB layout design I.
8. PCB layout design II.
9. Measurement on an electrical circuit with a sensor or actuator.
10. Programming with NI products I.
11. Programming with NI products II.
12. Communication analysis of vehicle electronic devices.
13. Presentation of submit works, credit.

Literature - fundamental:
1. BAUER, Horst. ROBERT BOSCH GMBH. Automotive electrics automotive electronics: systems and components. 4th ed., completely rev. and extended. Plochingen: Robert Bosch, 2004, 503 s. : il. ISBN 1-86058-436-5.
2. JAN, Zdeněk, Bronislav ŽDÁNSKÝ a Jindřich KUBÁT. Automobily. 5, Elektrotechnika motorových vozidel I. 3. vydání. Brno: Avid, 2012. ISBN 978-80-87143-22-3.
3. JAN, Zdeněk, Jindřich KUBÁT a Bronislav ŽDÁNSKÝ. Automobily. 6, Elektrotechnika motorových vozidel I. 3. Brno: Avid, 2013. ISBN 978-80-87143-27-8.
4. ŠTĚRBA, Pavel. Elektronika a elektrotechnika motorových vozidel: Seřizování, diagnostika závad a chybové kódy OBD. Brno: CPress, 2013. ISBN 978-80-264-0271-8
5. SELECKÝ, Matúš. Arduino: uživatelská příručka. Brno: Computer Press, 2016. ISBN 978-80-251-4840-2.
Literature - recommended:
1. FIJALKOWSKI, Bogdan Thaddeus. Automotive Mechatronics: Operational and Practical Issues. 2. vydání. Dordrecht: Springer, 2009. ISBN 978-94-007-1182-2.
2. TŮMA, Jiří. Vehicle gearbox noise and vibration: measurement, signal analysis, signal processing and noise reduction measures. Chichster : Wiley, 2014. ISBN 978-1-118-35941-9.
3. DOLEČEK, Jaroslav. Moderní učebnice elektroniky - 1. díl Základy elektroniky, ideální a reálné prvky: rezistor, kondenzátor, cívka. 1. Praha: BEN - technická literatura, 2005. ISBN 80-730-0146-2.
4. DOLEČEK, Jaroslav. Moderní učebnice elektroniky - 2. díl Polovodičové prvky a elektronky. 1. Praha: BEN - technická literatura, 2005. ISBN 80-730-0161-6.
5. ŠANDERA, Josef. Návrh plošných spojů pro povrchovou montáž. 1. Praha: BEN - technická literatura, 2006. ISBN 80-730-0181-0.
7. KERNIGHAN, Brian W a Dennis M RITCHIE. Programovací jazyk C. 1. Brno: Computer Press, 2006. ISBN 80-251-0897-X.
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
N-ADI-P full-time study --- no specialisation -- Cr,Ex 6 Compulsory 2 2 W
N-AAE-P full-time study --- no specialisation -- Cr,Ex 6 Compulsory 2 2 W