Seminar on Applied Mathematics (FSI-0AM)

Academic year 2025/2026
Supervisor: doc. Ing. Jiří Šremr, Ph.D.  
Supervising institute: ÚM all courses guaranted by this institute
Teaching language: Czech
Aims of the course unit:
 
Learning outcomes and competences:
 
Prerequisites:
 

Links to other subjects:
recommended prerequisite: Mathematics II-B [BM]
recommended prerequisite: Mathematics III [3M]
compulsory prerequisite: Mathematical Seminar [S3M]
recommended prerequisite: Mathematical Analysis III [SA3]

Course contents:

The course is designed for students of the 2nd year od study, it follows topics in Mathematics I, II, III, BM and will introduce the students to the possibilities of using the basic mathematical apparatus in mathematical modelling in physics, mechanics and other technical disciplines. In seminars, some problems  will be selected that students have previously encountered, and these will be discussed in more detail from a mathematics point of view. Furthermore, mathematical modelling using differential equations as well as methods of analysis of the equations obtained will be shown.

Teaching methods and criteria:
 
Assesment methods and criteria linked to learning outcomes:
 
Controlled participation in lessons:
 
Type of course unit:
    Exercise  13 × 2 hrs. compulsory                  
Course curriculum:
    Exercise

After agreement with the students, some of the following topics will be selected:



  • First-order partial differential equations, transport equation.

  • Sturm-Liouville problem for second-order ordinary differential equations.

  • Heat equation, Diffusion equation.

  • Wave equation in the plane, characteristics, initial value problem.

  • Bessel equation, Bessel functions.

  • Vibrations of a string and a membrane.

  • Equation of catenary.

  • First-order implicit differential equations, envelope of a family of curves.

  • Euler differential equation in stress-analysis of thick-walled cylindrical vessels and analysis of deformation of shells.

  • Green functions of two-point boundary value problem in analysis of bending of beams.

  • Fredholm property for periodic problems and stability of compressed bars.

  • Planar autonomous systems of ODEs: Stability and classification of equlilibria, phase portrait.

  • Linear oscillators with one degree of freedom, different kinds of damping.

  • Duffing equation, Jacobi elliptic functions.

  • Non-linear oscillators with one degree of freedom.

  • Linear oscillations with two degree of freedom.

  • Mathematical modelling of a population dynamic.

  • Mathematical modelling of motions of dislocations in crystals.

Literature - fundamental:
1. P. Drábek, G. Holubová, Parciální diferenciální rovnice [online], Plzeň, 2011, dostupné z: http://mi21.vsb.cz/modul/parcialni-diferencialni-rovnice.
2. P. Hartman, Ordinary differential equations, John Wiley & Sons, New York - London - Sydney, 1964.
3. L. Perko, Differential Equations and Dynamical Systems, Text in Applied Mathematics, 7, Springer-Verlag, New York, 2001, ISBN 0-387-95116-4.
4. M. Levi, Classical Mechanics With Calculus of Variations and Optimal Control: An Intuitive Introduction.Student Mathematical Library 69, American Mathematical Society, 2014.ISBN 978-0-8218-9138-4.
Literature - recommended:
1. P. Drábek, G. Holubová, Parciální diferenciální rovnice [online], Plzeň, 2011, dostupné z: http://mi21.vsb.cz/modul/parcialni-diferencialni-rovnice.
2. J. Kalas, M. Ráb, Obyčejné diferenciální rovnice, Masarykova univerzita, Brno, 1995, ISBN 80-210-1130-0.
3. L. Perko, Differential Equations and Dynamical Systems, Text in Applied Mathematics, 7, Springer-Verlag, New York, 2001, ISBN 0-387-95116-4.
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
B-OBN-P visiting student --- no specialisation -- Cr 2 Elective 1 1 S