doc. Ing. Bc. Jan Fišer, Ph.D.

E-mail:   fiser@fme.vutbr.cz 
Dept.:   Energy Institute
Dept. of Thermodynamics and Environmental Engineering
Position:   Associate Professor
Room:   A2/403

Education and academic qualification

  • 2022, Assoc. Prof., Faculty of Mechanical Engineering, Brno University of Technology, Design and Process Engineering
  • 2011, Ph.D, Faculty of Mechanical Engineering, Brno University of Technology, Design and Process Engineering
  • 2004, Ing., Faculty of Mechanical Engineering, Brno University of Technology, Environmental Engineering
  • 2001, B.Sc., Faculty of Electrical Engineering and Computer Science, Brno University of Technology, Electrical Engineering Components and Systems

Career overview

  • 2022 - till now, Associate Professor, Department of Thermodynamic and Environmental engineering, Institute of Energy, Brno University of Technology

  • 2015 - 2022, Assistant Professor, Department of Thermodynamic and Environmental engineering, Institute of Energy, Brno University of Technology

  • 2012 - 2015, Research Fellow, Department of Thermodynamic and Environmental engineering, Institute of Energy, FSI BUT in Brno

  • 2011 - 2012, Technical Researcher, Department of Thermomechanics and Environmental Engineering, Institute of Energy, Brno University of Technology

  • 2005 - 2011,Technical Officer, Centre for Aerospace Research, Institute of Aerospace Engineering, FSI BUT in Brno

     

Pedagogic activities

  • Termodynamics (6TT)
  • Ventilation and air conditioning I (IVK) - lectures and exercises
  • Application of Air Conditioning Systems (IAK) - lectures and exercises
  • Thermal Management of Vehicles (QTE) - lectures and exercises
  • Experimental Methods (IEM) - exercises and lecture
  • Experimental Methods II (IEM) - exercises and lecture

Scientific activities

  • Measurement and evaluation of indoor environmental conditions using thermal manikins
  • Optimisation of the microclimate in transport aircraft and automotive cabins
  • Reducing the energy consumption of air conditioning and ventilation in vehicle cabins

For more details see the Thermal Management Laboratory website - https://eu.fme.vutbr.cz/o-nas-laboratore-ottp-klimaticka-komora

  • Jan Fišer, PhD, Eng, Associate Professor on Department of Thermodynamics and Environmental Engineering, Brno University of Technology, Brno, Czech Republic.His main interests are computational modeling of indoor environments, thermal comfort prediction, thermal comfort measurements based on thermal manikins, and thermal management of vehicles cabins.

Projects

  • project MŠMT 1M0021630503: Aerospce research centre, task A6 - Prediction of inner environment in airplane cabin

Sum of citations (without self-citations) indexed within SCOPUS

153

Sum of citations (without self-citations) indexed within ISI Web of Knowledge

105

Supervised courses:

Publications:

  • Róbert Toma, Kalev Kuklane, Jan Fišer, Miroslav Jícha:
    CLOTHING EVAPORATIVE RESISTANCE MEASUREMENT USING THERMAL MANIKINS,
    HAZMAT PROTECT 2018 - BOOK OF ABSTRACTS , pp.56-56, ISBN 978-80-270-4852-6, (2018)
    conference paper
    akce: HAZMAT PROTECT 2018, Státní ústav jaderné, chemické a biologické ochrany, v. v. i., 14.09.2022-15.09.2022
  • POKORNÝ, J.; KOPEČKOVÁ, B.; FIŠER, J.; TOMA, R.; JÍCHA, M.:
    Využití termofyziologického modelu na určení tepelné zátěže člověka v ochranných oděvech,
    HAZMAT PROTECT 2018, 3. ročník odborné konference o ochraně proti CBRN látkám SBORNÍK ABSTRAKTU + DVD s celými články, pp.1-10, ISBN 978-80-270-4852-6, (2018)
    conference paper
    akce: HAZMAT PROTECT 2018, Státní ústav jaderné, chemické a biologické ochrany, v. v. i., 14.09.2022-15.09.2022
  • TOMA, R.; HRUBANOVÁ, K.; FIŠER, J.; JÍCHA, M.:
    Determination of clothing heat transfer coefficients for use in the iHVAC system
    abstract
  • POKORNÝ, J.; FIŠER, J.; TOMA, R.; FOJTLÍN, M.; JÍCHA, M.:
    Visualisation of temperatures and heat fluxes in contact area of automotive seat
    conference proceedings
    akce: 12th International Manikin and Modelling Meeting (12i3m) , St. Gallen, 29.08.2018-31.08.2018
  • POKORNÝ, J.; KOPEČKOVÁ, B.; FIŠER, J.; JÍCHA, M.:
    Simulator with integrated HW and SW for prediction of thermal comfort to provide feedback to the climate control system ,
    Proceedings of the International conference Experimental Fluid Mechanics 2017 , pp.526-532, (2018)
    conference paper
    akce: Experimental fluid mechanics 2017, Mikulov, 21.11.2017-24.11.2017
  • BAJKO, J.; FIŠER, J.; JÍCHA, M.:
    Temperature measurement and performance assessment of the experimental composting bioreactor,
    EPJ Web of Conferences, pp.1-5, (2018)
    conference paper
    akce: Experimental fluid mechanics 2017, Mikulov, 21.11.2017-24.11.2017
  • TOMA, R.; FIŠER, J.; FOJTLÍN, M.; JÍCHA, M.:
    Estimation of thermal sensation based on human´s physiological parameters in indoor environment
    abstract
  • FIŠER, J.; POKORNÝ, J.; FOJTLÍN, M.; TOMA, R.:
    An innovative HVAC control system: Comparison of the system outputs to comfort votes, International Society for Environmental Ergonomics.
    abstract
  • FIŠER, J.; POKORNÝ, J.; FOJTLÍN, M.; TOMA, R.:
    Car cabin thermal comfort measurement under real traffic conditions,
    The 17th International Conference on Environmental Ergonomics ICEE2017 - book of abstracts, pp.190-190, (2017), International Society for Environmental Ergonomics.
    abstract
  • POKORNÝ, J.; FIŠER, J.; FOJTLÍN, M.; KOPEČKOVÁ, B.; TOMA, R.; SLABOTINSKÝ, J.; JÍCHA, M.:
    Verification of Fiala-based human thermophysiological model and its application to protective clothing under high metabolic rates, Elsevier
    journal article in Web of Science
  • FOJTLÍN, M.; POKORNÝ, J.; FIŠER, J.; TOMA, R.; TUHOVČÁK, J.:
    Impact of measurable physical phenomena on contact thermal comfort,
    EFM16 – Experimental Fluid Mechanics 2016, pp.1-4, (2017), EDP Sciences
    journal article in Web of Science
    akce: Experimental fluid mechanics 2016, Mariánské lázně, 15.11.2016-18.11.2016
  • FOJTLÍN, M.; FIŠER, J.; POKORNÝ, J.; POVALAČ, A.; URBANEC, T.; JÍCHA, M.:
    An Innovative HVAC Control System: Implementation and testing in a vehicular Cabin
    journal article in Web of Science
  • POKORNÝ, J.; FIŠER, J.; FOJTLÍN, M.; JÍCHA, M.:
    Simulační nástroj tepelné zátěže kabiny - ověření predikce na základě validačních testů v klimatické komoře,
    Simulace budov a techniky prostředí, pp.1-154, ISBN 978-80-270-0772-1, (2016)
    conference paper
    akce: Simulace budov a techniky prostředí 2016, Brno, 10.11.2016-11.11.2016
  • FIŠER, J.; PIDROVÁ, K.; TOMA, R.:
    STANOVENÍ TEPELNÝCH ODPORŮ RUKAVIC POMOCÍ TEPELNÉHO MANEKÝNA,
    HAZMAT PROTECT 2016 - sborník konference, pp.1-9, ISBN 978-80-270-0474-4, (2016), SÚJCHBO, v.v.i.
    abstract
  • FOJTLÍN, M.; FIŠER, J.:
    TEPELNÝ MANEKÝN – MOŽNOSTI TESTOVANIA OCHRANNÝCH PROSTRIEDKOV,
    HAZMAT PROTECT 2016 - sborník konference, pp.1-6, ISBN 978-80-270-0474-4, (2016), SÚJCHBO, v.v.i.
    abstract
  • FOJTLÍN, M.; FIŠER, J.; POKORNÝ, J.; POVALAČ, A.; URBANEC, T.:
    An Innovative HVAC Control System - Implementation and Testing in a Vehicular Cabin.,
    Proceedings of the 11th International Meeting on Thermal Manikin and Modelling (11i3m), pp.49-49, ISBN 978-988-77662-0-9, (2016), Proceedings of the 11th International Meeting on Thermal Manikin and Modelling (11i3m)
    abstract
  • FOJTLÍN, M.; FIŠER, J.; JÍCHA, M.:
    Determination of convective and radiative heat transfer coefficients using 34-zones thermal manikin: Uncertainty and reproducibility evaluation, Elsevier Inc.
    journal article in Web of Science
  • POKORNÝ, J.; POLÁČEK, F.; FOJTLÍN, M.; FIŠER, J.; JÍCHA, M.:
    Measurement of airflow and pressure characteristics of a fan built in a car ventilation system,
    EPJ Web of Conferences, pp.644-647, (2016), EDP Sciences
    journal article in Web of Science
    akce: Experimental fluid mechanics 2015, Praha, 17.11.2015-20.11.2015
  • FIŠER, J.; POVALAČ, A.; URBANEC, T.; POKORNÝ, J.; FOJTLÍN, M.:
    Implementation of the equivalent temperature measurement system as a part of the vehicle Heating, ventilation and Air-conditioning unit,
    Proceedings of the 16th International Conference on Environmental Ergonomics, pp.179-179, ISBN 978-1-86137-656-5, (2015), BioMed Central
    abstract
  • POKORNÝ, J.; FIŠER, J.; JÍCHA, M.:
    Calibration of Virtual Testing Stand of the Car Cabin using climatic chamber tests,
    EPJ Web of Conferences, pp.497-500, (2015), EDP Sciences
    conference paper
    akce: Experimental Fluid Mechanics 2014, Český Krumlov, 18.11.2014-21.11.2014
  • FIŠER, J.; BADER, V.; THOMSCHKE, C.:
    IMPACT OF CONVECTIVE PLUME AROUND HUMAN BODY ON TEQ MEASURED BY EQUIVALENT TEMPERATURE SENSORS,
    Proceedings of Ambience14&10i3m, pp.100-104, ISBN 978-952-15-3269-6, (2014), Tampere University of Technology
    conference paper
    akce: Ambience 14&10i3m, Tampere, 07.09.2014-09.09.2014
  • POKORNÝ, J.; FIŠER, J.; JÍCHA, M.:
    Virtual Testing Stand for evaluation of car cabin indoor environment, Elsevier
    journal article in Web of Science
  • POKORNÝ, J.; FIŠER, J.; JÍCHA, M.:
    A parametric study of influence of material properties on car cabin environment,
    EPJ Web of Conferences, pp.573-576, ISBN 978-80-260-5375-0, (2014), EDP Sciences
    conference paper
    akce: Experimental fluid mechanics 2013, Kutná Hora, 19.11.2013-22.11.2013
  • FIŠER, J.; POKORNÝ, J.; PODOLA, D.; JÍCHA, M.:
    EXPERIMENTAL INVESTIGATION OF CAR CABIN ENVIRONMENT DURING REAL TRAFFIC CONDITIONS,
    Engineering Mechanics, Vol.20, (2013), No.3/4, pp.229-236, ISSN 1802-1484, Association for Engineering Mechanics
    journal article - other
  • FIŠER, J.; JÍCHA, M.:
    Impact of air distribution system on quality of ventilation in small aircraft cabin, Elsevier
    journal article in Web of Science
  • VOLAVÝ, J.; FIŠER, J.; NOESKE, I.:
    Prediction of air temperature in the aircraft cabin under different operational conditions,
    Experimental Fluid Mechanics 2012 - Conference Proceedings, pp.785-790, ISBN 978-80-7372-912-7, (2013), EDP Sciences
    conference paper
    akce: Experimental Fluid Mechanics 2012, Hradec Králové, 20.11.2012-23.11.2012
  • FIŠER, J.; JÍCHA, M.:
    The influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation,
    Experimental Fluid Mechanics 2012 - Conference Proceedings, pp.185-190, ISBN 978-80-7372-912-7, (2013), EDP Sciences
    conference paper
    akce: Experimental Fluid Mechanics 2012, Hradec Králové, 20.11.2012-23.11.2012
  • POKORNÝ, J.; FIŠER, J.; JÍCHA, M.:
    Operational Heat Balance Model with Parameterized Geometry for the Prediction of Car Cabin Heat Loads, VEETECH Ltd.
    journal article in Web of Science
  • FIŠER, J.; TSIKOURIS, K.; NOESKE, I.; TRIMMEL, M.:
    DETAILED SIMULATION STUDY AND SUBJECT TESTING OF INDIVIDUALISED AIRCRAFT CABIN SUITES ENVIRONMENT,
    Proceedings of International Conference from Scientific Computing to Computational Engineering, pp.140-147, ISBN 978-618-80115-0-2, (2012), LFME
    conference paper
    akce: International Conference from Scientific Computing to Computational Engineering, Athény, 04.07.2012-07.07.2012
  • POKORNÝ, J.; FIŠER, J.; JÍCHA, M.:
    Calibration of the Heat Balance Model for Prediction of Car Climate,
    EPJ Web of Conferences, pp.928-932, ISBN 978-80-7372-784-0, (2012), EDP Sciences
    conference paper
    akce: Experimental Fluid Mechanics 2011, Jičín, 22.11.2011-25.11.2011
  • FIŠER, J.; JEDELSKÝ, J.; VACH, T.; FORMAN, M.; JÍCHA, M.:
    Comparison of CFD simulations and measurements of flow affected by coanda effect,
    EPJ Web of Conferences, pp.621-625, ISBN 978-80-7372-784-0, (2012), EDP Sciences
    conference paper
    akce: Experimental Fluid Mechanics 2011, Jičín, 22.11.2011-25.11.2011
  • FIŠER, J.; POKORNÝ, J.; JÍCHA, M.:
    Prediction of car cabin environment by means of 1D and 3D cabin model,
    EPJ Web of Conferences, pp.145-150, ISBN 978-80-7372-670-6, (2012), EDP Sciences
    conference paper
    akce: Experimental Fluid Mechanics 2010, Liberec, 24.11.2010-26.11.2010
  • FIŠER, J.; POKORNÝ, J.; JÍCHA, M.:
    1D SOFTWARE TOOLS FOR SIMULATIONS OF INDOOR CABIN ENVIRONMENT,
    Transaction of the VŠB-Technical university of Ostrava, Mechanical series, Vol.2010, (2011), No.3, pp.61-67, ISSN 1210-0471, VŠB - Technická univerzita Ostrava
    journal article - other
  • POKORNÝ, J.; FIŠER, J.; JÍCHA, M.:
    PREDIKCE TEPELNÉ POHODY DLE ZHANG S VYUŽITÍM TANABEHO MODELU FYZIOLOGIE ČLOVĚKA,
    Simulace budov a techniky prostředí. Sborník 6.konference IBPSA-CZ, pp.7-11, ISBN 978-80-254-8661-0, (2010), ČVUT
    conference paper
    akce: Simulace budov a techniky prostředí 2010, Praha, 08.11.2010-09.11.2010
  • POKORNÝ, J.; FIŠER, J.:
    Používané modely lidského tepelného komfortu,
    Strojárstvo/Strojírenství, Vol.2009, (2009), No.mimořádné, pp.209-210, ISSN 1335-2938, Media / ST s.r.o.
    journal article - other
    akce: XXVIII. Stretnutie katedier mechaniky tekutín a termomechaniky, Jasná, Demänovská dolina, 24.06.2009-26.06.2009
  • FIŠER, J.; MLČÁK, R.; PAVELEK, M.; JÍCHA, J.:
    Measurements of Temperature Patterns in Ventilated Spaces by Novel Measurement Method,
    Conference Proceedings, International Conference Experimental Fluid Mechanics 2008, pp.36-41, ISBN 978-80-7372-417-7, (2008), Technická Univerzita Liberec
    conference paper
    akce: Experimental Fluid Mechanics 2008, Liberec, 26.11.2008-28.11.2008
  • OTÁHAL, J.; KOŠNER, J.; FIŠER, J.; JÍCHA, M.:
    Influence of two-phase flow pattern in mixing chamber of effervescent atomizer on spray quality,
    Flucome 2007, pp.109-120, (2007), Florida state university
    conference paper
    akce: Flucome9, Tallahassee, 16.09.2007-19.09.2007
  • Fišer Jan, Otáhal Jan, Jícha Miroslav:
    Numerical Simulation of Cabin Environment in EV-55 Aircraft
  • OTÁHAL, J.; FIŠER, J.; KOŠNER, J.; JÍCHA, M.:
    Influence of the PDA setup on a quality of velocity distributions,
    21st Sympozium on Anemometry, Proceedings, pp.127-130, ISBN 978-80-87117-01-9, (2007), Ústav pro hydrodynamiku AV ČR, v. v. i.
    conference paper
    akce: 21th Symposium on Anemometry, Holany-Litice, 29.05.2007-30.05.2007
  • FIŠER, J.; JÍCHA, M.:
    CFD Simulation of Quality of Environment in Small Transport Airplanes Cabins,
    Letecký zpravodaj, Vol.2006, (2006), No.3, pp.3-5, ISSN 1211-877X, Czech Aerospace Manufacturers Association
    journal article - other
  • FIŠER, J.; JÍCHA, M.:
    Počítačové modelování mikroklimatu v kabinách dopravních letadel,
    Fluid Mechnics and Thermomechnics, pp.19-19, ISBN 80-227-2434-3, (2006), Slovak University of Technology in Bratislava
    conference paper
    akce: XXV. medzinárodná vedecká konferencia katedier mechaniky tekutín a termomechaniky, Modra-Harmónia, 28.06.2006-30.06.2006
  • Fišer Jan:
    Computer Simulation of Cabin Environment in the Evektor EV-55 Aircraft
  • Jaroš Michal, Fišer Jan:
    Simulace solárních zisků v dvojité energetické fasádě

List of publications at Portal BUT

Abstracts of most important papers:

  • FOJTLÍN, M.; FIŠER, J.; POKORNÝ, J.; POVALAČ, A.; URBANEC, T.; JÍCHA, M.:
    An Innovative HVAC Control System: Implementation and testing in a vehicular Cabin
    journal article in Web of Science

    Personal vehicles undergo rapid development in every imaginable way. However, a concept of managing a cabin thermal environment remains unchanged for decades. The only major improvement has been an automatic HVAC controller with one user's input – temperature. In this case, the temperature is often deceiving because of thermally asymmetric and dynamic nature of the cabins. As a result, the effects of convection and radiation on passengers are not captured in detail what also reduces the potential to meet thermal comfort expectations. Advanced methodologies are available to assess the cabin environment in a fine resolution (e.g. ISO 14505:2006), but these are used mostly in laboratory conditions. The novel idea of this work is to integrate equivalent temperature sensors into a vehicular cabin in proximity of an occupant. Spatial distribution of the sensors is expected to provide detailed information about the local environment that can be used for personalised, comfort driven HVAC control. The focus of the work is to compare results given by the implemented system and a Newton type thermal manikin. Three different ambient settings were examined in a climate chamber. Finally, the results were compared and a good match of equivalent temperatures was found.
  • FOJTLÍN, M.; FIŠER, J.; JÍCHA, M.:
    Determination of convective and radiative heat transfer coefficients using 34-zones thermal manikin: Uncertainty and reproducibility evaluation, Elsevier Inc.
    journal article in Web of Science

    A lot of research has been done in order to investigate heat transfer coefficients of human body in various postures, wind speeds and wind directions (e.g., [1-15]). However, there has not been any reference to measurement reproducibility and measurement confidence intervals. The purpose of this study was to determine heat transfer coefficients of a thermal manikin experimentally, while focusing on the repeated determination of the coefficients and statistic data evaluation. The manikin imitates human metabolic heat production; it measures a combined dry heat flux from its surface and also its surface temperature. The major part of the radiative heat flux was eliminated by low-emissivity coating applied to the surface of the nude manikin. The tests were performed across 34 zones that correspond to parts of a human body. Both standing and seated postures were investigated. The tests were conducted at constant air temperature (24°C) and constant wind speed (0.05 m.s-1) environment. Based on three repetitions of each case, the average values of heat transfer coefficients with their confidence intervals were calculated. Next, the results of this paper were compared to the results of similar experimental work of de Dear (de Dear et al. 1997) and Quintela (Quintela et al. 2004). A mismatch of the values is up to 1 W.m-2.K-1, while an extreme was found on the manikin’s seat with a difference of over 1 W.m-2.K-1. The outcomes of this study provide essential information on how to create detailed computational models of thermal environment with regards to thermal comfort where separate values of convective and radiative heat transfer coefficients are required.
  • POKORNÝ, J.; FIŠER, J.; JÍCHA, M.:
    Virtual Testing Stand for evaluation of car cabin indoor environment, Elsevier
    journal article in Web of Science

    In the paper the authors refer to a new computational tool for the transient prediction of the car cabin environment and heat load during real operating conditions. The aim of the Virtual Testing Stand software is to support an early stage of the HVAC design process to predict demands for the heating and cooling for various operational conditions and types of car. This software was developed in Matlab as a standalone executable application including a parametric generator of car cabin geometry, a heat transfer model and a graphical user interface. The mathematical model is formed by the set of heat balance equations, which takes into account the heat accumulation, and the heat exchange between the car cabin, the outside environment, the HVAC system and the passengers. In this paper the main features of Matlab application are presented together with a selected sensitivity study of two significant parameters in a winter test case.
  • FIŠER, J.; JÍCHA, M.:
    Impact of air distribution system on quality of ventilation in small aircraft cabin, Elsevier
    journal article in Web of Science

    A ventilation system of sufficient performance is the basic condition for comfort and health risk free environment in enclosed aircraft cabin spaces. The airflow pattern and spreading of fresh air into the cabin space mainly depend on the type of the air distribution system and location of heat sources/sinks. The present study deals with the investigation of the dependency between the type of the air distribution system and indoor air quality in a cabin of a small transport aircraft. The mock-up interior geometry of a small aircraft cabin for nine passengers was adopted for the investigation. Three types of the air distribution system were investigated: a typical mixing ventilation system, a modified mixing ventilation system and an under-aisle displacement ventilation system. The quality of ventilation was assessed based on the local mean age of air using CFD software Star-CCM+. At first, the CFD model of a typical mixing ventilation was validated against the experimental data of airflow in the mock-up of the small aircraft cabin. The validated model was then used for the evaluation of the three distribution systems under cold, mild and hot ambient environment conditions from the point of their performance for several typical aircraft operational conditions. Results of the study show a strong dependence of the air distribution systems performance on the ambient conditions. The most stable air distribution was reached with the modified mixing air distribution system. Other types of ventilation systems failed to provide sufficient ventilation and cooling under hot ambient conditions.
  • VOLAVÝ, J.; FIŠER, J.; NOESKE, I.:
    Prediction of air temperature in the aircraft cabin under different operational conditions,
    Experimental Fluid Mechanics 2012 - Conference Proceedings, pp.785-790, ISBN 978-80-7372-912-7, (2013), EDP Sciences
    conference paper
    akce: Experimental Fluid Mechanics 2012, Hradec Králové, 20.11.2012-23.11.2012

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of Flying Test Facility (FTF) located in Frauhofer Institute. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analyzed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.