Systémové přístupy pro procesy a energetiku (FSI-KS3)

Akademický rok 2021/2022
Garant: doc. Ing. Zdeněk Jegla, Ph.D.  
Garantující pracoviště: ÚPI všechny předměty garantované tímto pracovištěm
Jazyk výuky: čeština
Cíle předmětu:
Cíle kurzu jsou následující:
- seznámit posluchače s metodikami systémového řešení a optimalizací koncepce a skladby procesních a energetických linek i jejích nejdůležitějších subsystémů a individuálních zařízení;
- rozvinout u studentů schopnost aplikovat dříve nabyté znalosti termodynamických, fyzikálních a chemických zákonitostí na danou koncepci výrobní linky a její zařízení a rozhodovat v případě možností variantních řešení;
- podat základní orientaci ve složitosti technicko-ekonomických požadavků výroby a ochrany životního prostředí;
- umožnit studentům zdokonalení práce s profesionálními softwary (Maple, ChemCAD, VBA, atd.).
Výstupy studia a kompetence:
Studenti budou schopni aplikovat nabyté znalosti termodynamických, fyzikálních a chemických zákonitostí na řešení procesních a energetických linek, provozů a jejich subsystémů a kvalifikovaně rozhodovat v případě možností variantních řešení. Budou disponovat základní orientací ve složitosti požadavků výroby a ochrany životního prostředí. Zdokonalí si pracovní dovednosti s profesionálními simulačními softwary a programovými implementacemi (ChemCAD, Maple, VBA, atd.).
Prerekvizity:
Znalosti nabyté jednak v základních kurzech specializace, tj. zejména znalost tepelných, hydraulických a difúzních pochodů, spolu se znalostmi nabytými v navazujících předmětech studia týkající se zejména problematiky energie a emisí, projektování a řízení procesů a navrhování procesních a energetických systémů.

Vazby k jiným předmětům:
povinná prerekvizita: Energie a emise [KEE-A]
povinná prerekvizita: Systémové inženýrství II [KS2]
povinná prerekvizita: Systémové inženýrství I [KS1]
povinná prerekvizita: Navrhování procesních a energetických systémů [KNP]

Obsah předmětu (anotace):
Předmět "Systémové přístupy pro procesy a energetiku" prezentuje postupy, techniky a činnosti, jejichž úkolem je systematickým způsobem zajistit co nejlepší řešení dané procesní či energetické výrobní linky, jejího subsystému i dílčího zařízení jak v případě nového řešení, tak v případech rekonstrukce stávajícího provedení pro nové účely. Předmět mimo nezbytné teoretické vybavení seznámí posluchače na řadě konkrétních procesních a energetických průmyslových aplikací zejména s:
- přístupy pro optimalizace provozních podmínek klíčového zařízení a jeho provedení (jedno vs. vícestupňové) a řešení výchozí aparátové struktury a skladby (tzv. flowsheeting);
- přístupy koncepční optimalizace vybrané skladby výrobní linky pro optimální provozní podmínky – tzv. integrace (syntéza) procesu resp. integrace subsystémů linky (subsystémy výměny tepla a externích energetických zdrojů);
- techniky integrace, optimalizace a detailního návrhu významných zařízení výrobní linky;
- způsoby užití optimalizace v běžných inženýrských činnostech (optimalizace potrubních rozvodů, izolací, apod.).
Metody vyučování:
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení:
Podmínky k udělení zápočtu:
Podmínkou k udělení zápočtu je aktivní absolvování cvičení, vypracování průběžně zadávaných úkolů a získání celkem alespoň 10 bodů.
Zkouška:
Při zkoušce posluchač prokáže teoretické znalosti odpřednášené látky, zodpovězením dvou teoretických otázek a praktické schopnosti, výpočtovým vyřešením zadané písemné úlohy.
Každá část zkoušky je individuálně bodována. Hodnocení je podle zisku celkového počtu bodů následující:
A - 90 až 100 bodů,
B - 80 až 89 bodů,
C - 70 až 79 bodů,
D - 60 až 69 bodů,
E - 50 až 59 bodů,
F (nevyhověl) - méně než 50 bodů.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Výuka je prováděna v počítačové laboratoři.
Účast na přednáškách je doporučená. Účast na cvičeních je povinná a kontrolovaná.
Typ (způsob) výuky:
    Přednáška  13 × 2 hod. nepovinná                  
    Cvičení s počítačovou podporou  13 × 2 hod. povinná                  
Osnova:
    Přednáška 1. Úvod do systémového (integrovaného) řešení provozu, části a fáze integrovaného řešení. Techniky pro úvodní část řešení - optimalizace podmínek klíčového zařízení, souvisejících proudů a výchozího schématu (flowsheeting).

2. Úvod do optimalizace, matematické modely a metody, nejčastěji se vyskytující typy úloh a metody řešení (LP/MILP, NLP/MINLP). Dostupné softwary.

3. Zásady extrakce dat z flowsheetu. Výchozí technicko-ekonomická rozvaha optimální úrovně systému využití tepla a utilit (targeting, supertargeting).

4. Metody optimálního osazení (tzv. syntézy) sítě výměny tepla v případě nového návrhu procesu (grassroot design).

5. Metody optimálních úprav osazení sítě výměny tepla v případě rekonstrukce stávajícího procesu (retrofit design).

6. Úvod do optimálního začlenění (integrace) externích energetických zdrojů. Techniky výchozího technicko-ekonomického posouzení konkurenčních variant provedení nejnáročnějších „hot utilities“ a výběr nejvhodnějšího řešení.

7. Techniky pro optimální začlenění (integraci) externích energetických zdrojů. Metody a techniky pro integraci vybraného nejvhodnějšího řešení nejnáročnějších „hot utilities“.

8. Optimalizace provedení externích energetických zdrojů. Postupy pro „hot utilities“ v případě nového návrhu a rekonstrukce.

9. Optimalizace výrobních a provozních podmínek procesních a energetických linek a jejich klíčových zařízení.

10. Techniky optimalizace individuálních zařízení na výměnu tepla pro různé účely (technické, ekonomické, provozní).

11. Metody optimálního návrhu soustavy energeticky náročných zařízení přenosu tepla a hmoty.

12. Postupy optimálního návrhu potrubí, potrubních sítí a izolací.

13. Základy modelování a optimalizace v oblasti provozní dynamiky a neustálených stavů.
    Cvičení s počítačovou podporou 1. Bilance složitého procesu s recyklem – srovnání vlastností sekvenční a numerické (globální) metody řešení pro optimalizaci podmínek klíčového zařízení.

2. Příklady optimalizačních modelů – aspekty typických LP/MILP a NLP/MINLP úloh.

3. Příklad technicko-ekonomické rozvahy optimální úrovně systému využití tepla (targeting).

4. Praktická aplikace moderních metod LP a NLP při novém návrhu výměníkové sítě.

5. Praktická aplikace moderních metod LP a NLP při rekonstrukci výměníkové sítě.

6. Úvod do integrace pecí/kotlů jako energeticky nejnáročnějších externích energetických zdrojů. Výchozí technicko-ekonomická analýza konkurenčních variant.

7. Integrace pecí/kotlů jako energeticky nejnáročnějších externích energetických zdrojů. Aspekty integrace nového řešení a omezení v případě rekonstrukce.

8. Optimalizační postupy pro pece/kotle v případě nového návrhu a v případě rekonstrukce.

9. Aplikace metod LP – optimalizace výrobních kapacit výrobních linek, minimalizace výrobních nákladů, variabilita produkce

10. Výpočtové aplikace optimalizačních postupů pro různé účely optimalizace deskových a trubkových výměníků tepla.

11. Optimalizace uspořádání vícestupňové odpařovací stanice. Optimalizace absorberu – problematika technicko/ekonomicko/ekologického řešení.

12. Optimalizace potrubí a izolace potrubí pro dané provozní podmínky.

13. Výpočet doby najíždění kotle a optimální provozní periody předehřívací linky.
Literatura - základní:
1. J. J. Klemeš, P. S. Varbanov, S. R. Wan Alwi, Z. A. Manan: Sustainable Process Integration and Intenzification, 2nd. edition, De Gruyter, Berlin (2018)
2. M. Kleiber: Process Engineering, De Gruyter, Berlin (2016)
3. F. Carl Knopf: Modeling, Analysis and Optimization of Process and Energy Systems,John Wiley & Sons, Inc., hoboken, New Jersey (2012)
4. Renaud Gicquel: Energy Systems. A new approach to engineering thermodynamics, Taylor & Francis Group, London, UK (2012).
5. Seider W.D., Seader J.D., Lewin D.R.: Products & Process Design Principles. Synthesis, Analysis and Evaluation. Fourth edition, John Wiley and Sons, USA (2017).
6. Biegler, L.T, Grossmann, I.E. and Westerberg, A.W.: Systematic Methods of Chemical Process Design, Prentice-Hall, Upper Saddle River, New Jersey (1997).
Literatura - doporučená:
1. J. J. Klemeš, P. S. Varbanov, S. R. Wan Alwi, Z. A. Manan: Sustainable Process Integration and Intenzification, 2nd. edition, De Gruyter, Berlin (2018)
2. M. Kleiber: Process Engineering, De Gruyter, Berlin (2016)
3. Stehlík, P.: Integrace procesů a její význam pro redukci spotřeby energie a škodlivých emisí -základní principy, Nakladatelství “Procesní inženýrství“, edice MAPRINT, Praha (1995).
Zařazení předmětu ve studijních programech:
Program Forma Obor Spec. Typ ukončení   Kredity     Povinnost     St.     Roč.     Semestr  
N-PRI-P prezenční studium --- bez specializace -- zá,zk 6 Povinný 2 2 L