Strojové vidění (FSI-VSV-K)

Akademický rok 2021/2022
Garant: prof. RNDr. Ing. Jiří Šťastný, CSc.  
Garantující pracoviště: ÚAI všechny předměty garantované tímto pracovištěm
Jazyk výuky: čeština
Cíle předmětu:
Cílem předmětu je, aby studenti pochopili základní principy vzniku a zpracování digitální fotografie a seznámili se specifiky snímání obrazu pro průmyslové a vědecké aplikace.
Výstupy studia a kompetence:
Znalost základních principů vzniku a zpracování digitální fotografie. Schopnost analyzovat reálný problém, vybrat vhodné hardwarové vybavení pro jeho řešení, vytvořit odpovídající software a vytvořené řešení implementovat.
Prerekvizity:
Předpokládá se základní znalosti algoritmizace, programování, matematiky a fyziky.
Obsah předmětu (anotace):
Předmět seznamuje s podstatou vzniku digitální fotografie a s prací s digitální fotografií v kontextu strojového vidění. Zvláštní pozornost je věnována požadavkům strojového vidění na způsob snímání obrazu a osvětlení scény.
Metody vyučování:
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení:
Požadavky pro zápočet: aktivní účast ve cvičeních, zpracování jednoduché praktické úlohy. Zkouška: ústní zkouška.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Účast na přednáškách je doporučená, účast na cvičeních je povinná. Cvičení, která nemůže student absolvovat v řádné termínu je možno nahradit v termínu náhradním.
Typ (způsob) výuky:
    Konzultace v kombinovaném studiu  1 × 9 hod. povinná                  
    Konzultace  1 × 34 hod. nepovinná                  
    Laboratorní cvičení  1 × 9 hod. povinná                  
Osnova:
    Konzultace v kombinovaném studiu 1. Proces tvorby digitálního obrazu
2. Senzory pro snímání digitálního obrazu
3. Objektivy a jejich vlastnosti
4. Osvětlovače a jejich vlastnosti
5. Optické filtry a jejich použití
6. Řádkové kamery
7. Reprezentace digitálního obrazu, základní operace pro úpravu obrazu
8. Zvýraznění hran, detekce bodů a oblasti zájmu, extrakce příznaků
9.Segmentace
10. Rozpoznávání objektů
11. Rozpoznávání tříd objektů
12. Sledování objektů
13. Lidar
    Konzultace 1. Proces tvorby digitálního obrazu
2. Senzory pro snímání digitálního obrazu
3. Objektivy a jejich vlastnosti
4. Osvětlovače a jejich vlastnosti
5. Optické filtry a jejich použití
6. Řádkové kamery
7. Reprezentace digitálního obrazu, základní operace pro úpravu obrazu
8. Zvýraznění hran, detekce bodů a oblasti zájmu, extrakce příznaků
9.Segmentace
10. Rozpoznávání objektů
11. Rozpoznávání tříd objektů
12. Sledování objektů
13. Lidar
    Laboratorní cvičení 1. Seznámení se s vývojovým prostředím MATLAB – computer vision toolbox
2. Připojení průmyslových kamer a jejich konfigurace
3. Volba, instalace a nastavení objektivu. Vady objektivů.
4. Instalace a ovládání osvětlovačů. Vliv osvětlovačů na zobrazení zájmových částí.
5. Vliv osvětlovačů na zobrazení zájmových částí.
6. Volba a práce s filtry. Vliv filtrů na zobrazení zájmových částí.
7. Softwarová úprava obrazu.
8. Návrh a implementace sytému počítačového vidění pro zadanou úlohu.
9. Návrh a implementace sytému počítačového vidění pro zadanou úlohu.
10. Návrh a implementace sytému počítačového vidění pro zadanou úlohu
11. Práce s Lidarem
12. Samostatný projekt
13. Samostatný projekt
Literatura - základní:
1. SZELISKI, Richard. Computer Vision: Algorithms and Applications [online]. 1. London: Springer, 2010 [cit. 2019-02-19]. Texts in computer science. ISBN 978-1-84882-935-0. Dostupné z: https://www.springer.com/gp/book/9781848829343
2. BATCHELOR, Bruce G. Machine vision handbook: with 1295 figures and 117 tables [online]. 1. London: Springer, [2012] [cit. 2019-02-19]. ISBN 978-1-84996-169-1. Dostupné z: https://link.springer.com/referencework/10.1007%2F978-1-84996-169-1
3. MCMANAMOM, Paul. Field Guide to Lidar. 1. Bellingham, Washington 98227-0010 USA: SPIE, 2015. ISBN 9781628416541.
4. A Practical Guide to Machine Vision Lighting. Automated Test and Automated Measurement Systems - National Instruments [online]. National Instruments, 2019, 30. ledna 2017 [cit. 2019-02-19]. Dostupné z: http://www.ni.com/white-paper/6901/en/
Literatura - doporučená:
1. HAVEL, Otto. Strojové vidění I: Principy a charakteristiky. Automa. Automa – časopis pro automatizační techniku, s. r. o., 2008, 14(1), 42-45. ISSN 1210-9592.
2. HAVEL, Otto. Strojové vidění II: Úlohy, nástroje a algoritmy. Automa. Automa – časopis pro automatizační techniku, s. r. o., 2008, 14(2), 54-56. ISSN 1210-9592.
3. HAVEL, Otto. Strojové vidění III: Kamery a jejich části. Automa. Automa – časopis pro automatizační techniku, s. r. o., 2008, 14(3), 42-44. ISSN 1210-9592.
4. HAVEL, Otto. Strojové vidění IV: Osvětlovače. Automa. Automa – časopis pro automatizační techniku, s. r. o., 2008, 14(4), 47-49. ISSN 1210-9592.
Zařazení předmětu ve studijních programech:
Program Forma Obor Spec. Typ ukončení   Kredity     Povinnost     St.     Roč.     Semestr  
N-AIŘ-K kombinované studium --- bez specializace -- zá,zk 5 Povinný 2 2 Z