Metoda konečných prvků - pokročilé analýzy (FSI-ZAW)

Akademický rok 2023/2024
Garant: doc. Ing. Pavel Maňas, Ph.D.  
Garantující pracoviště: ÚK všechny předměty garantované tímto pracovištěm
Jazyk výuky: čeština
Cíle předmětu:

Absolventi budou schopni vytvářet multifyzikální výpočtové modely, provádět metodologicky správně simulace a komplexní vyhodnocení stavu napjatosti složitých dílů a sestav se zohledněním různých nelinearit.

Výstupy studia a kompetence:

- Schopnost provádět jednoduché multifyzikální simulace stavu napjatosti tvarově složitých součástek a sestav v oblasti strojního inženýrství.
- Schopnost komplexně připravit tvarově složité geometrie, využít pokročilé metody tvorby sítě, zadat komplexní okrajové podmínky a materiálové vlastnosti, parametrizace modelu.
- Prohloubení zkušenosti s použitím sw ANSYS Workbench a ANSYS Discovery, prohloubení dovedností při interpretaci výsledků simulací.
- Prohloubení dovedností a návyků potřebných pro práci s moderním MKP systémem ať už ve formě samostatného softwaru nebo integrovaného modulu v CAD systému.
- Pochopení významu pokročilých strukturálních analýz v inženýrské praxi.

Prerekvizity:
- znalosti z oblasti mechaniky, dynamiky, pružnosti a pevnosti, CAD modelování a materiálových věd na úrovni bakalářského studia strojního inženýrství.

Obsah předmětu (anotace):

Předmět je zaměřen na nelineární analýzu stavu napjatosti součástek a sestav v oblasti strojního inženýrství. Dále se studenti seznámí se základy výpočtové mechaniky tekutin, provádění simulací rychlých dynamických dějů a simulací aditivních procesů.
Důraz je kladen na metodickou tvorbu komplexního výpočtového modelu, jeho parametrizaci, interpretaci, verifikaci a validaci výsledků simulací, odhad a hodnocení různých vlivů na přesnost výsledků.
Předmět rozvíjí a integruje poznatky z předcházejícího studia, vytváří předpoklady pro úspěšné zvládnutí komplexních konstrukčních projektů.

Metody vyučování:
Přednášky, cvičení, samostudium.
Způsob a kritéria hodnocení:
Podmínky udělení zápočtu:
- aktivní účast na přednáškách (max. 10 bodů),
- vyřešení zadaných úloh a prezentace dosažených výsledků (max. 30 bodů),
- minimálně je nutné získat 20 bodů.
Podmínky získání zkoušky:
- praktická část: metodicky správné vyřešení zadané úlohy (max. 40 bodů),
- ústní zkouška (max. 20 bodů).
- celkem je možno získat až 100 bodů, výsledná klasifikace se určí podle stupnice ECTS.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Přednášky: účast je doporučená.
Cvičení: účast je povinná a kontrolovaná vyučujícím, povolují se max. dvě absence. V případě dlouhodobé nepřítomnosti je náhrada zameškané výuky v kompetenci garanta předmětu.
Typ (způsob) výuky:
    Přednáška  8 × 2 hod. nepovinná                  
    Cvičení s počítačovou podporou  8 × 4 hod. povinná                  
Osnova:
    Přednáška

- Simulace s pomocí MKP: typy analýz, parametrický výpočtový model a simulace, interpretace, verifikace a validace výsledků.
- Základy teplotní analýzy.
- Základy analýzy proudění.
- základy multifyzikální analýzy
- Dynamické úlohy: dynamika tuhých těles, transientní dynamická analýza.
- Pokročilé materiálové modely.
- Rychlé dynamické děje: náraz, tváření, výbuch.
- Simulace aditivních procesů.

    Cvičení s počítačovou podporou

- Příprava parametrické geometrie v CAD systému, pokročilá tvorba sítě, pokročilé materiálové modely.
- Teplotně – napěťová analýza součástky.
- CFD analýza ventilu, FSI analýza ventilu.
- jednoduché multifyzikální analýzy.
- Analýza přenosu sil a zatížení v sestavě, dynamika tuhých těles, přechod k transientní dynamické analýze tělesa v sestavě.
- Jednoduchý drop test výrobku, např. absorbér nárazu vyrobený SLM technologií.
- Použití pokročilých materiálových modelů v simulaci.
- Závěrečný seminář, prezentace výsledků

Literatura - základní:
1. KUROWSKI, Paul M., Finite Element Analysis for Design Engineers. Second edition. SAE International, 2017. ISBN-PDF 978-0-7680-8369-9. [online] Dostupné z: https://app.knovel.com/web/toc.v/cid:kpFEADEE04/viewerType:toc//root_slug:finite-element-analysis/url_slug:finite-element-analysis?b-q=kurowski&sort_on=default&b-group-by=true&b-sort-on=default&b-content-type=all_references&include_synonyms=no
2. RUGARLI, Paolo. Structural analysis with finite elements. Thomas Telford Limited, 2010. ISBN 978-0-7277-4093-9. [online] Dostupné z: https://app.knovel.com/web/toc.v/cid:kpSAFE0003/viewerType:toc//root_slug:structural-analysis-with/url_slug:structural-analysis-with?b-q=rugarli&sort_on=default&b-group-by=true&b-sort-on=default&b-content-type=all_references
3. Tu, Jiyuan Yeoh, Guan-Heng Liu, Chaoqun. (2018). Computational Fluid Dynamics - A Practical Approach (3rd Edition). Elsevier. [online] Dostupné z:  https://app.knovel.com/hotlink/toc/id:kpCFDAPA19/computational-fluid-dynamics/computational-fluid-dynamics
Literatura - doporučená:
1. ANSYS Student Support Resources. [Online] Dostupné z: https://www.ansys.com/academic/free-student-products/support-resources.
2. Ansys Innovation Courses. [online]. Https://courses.ansys.com
Zařazení předmětu ve studijních programech:
Program Forma Obor Spec. Typ ukončení   Kredity     Povinnost     St.     Roč.     Semestr  
N-KSI-P prezenční studium --- bez specializace -- zá,zk 4 Povinný 2 1 L