Vibrace, hluk a bioakustika (FSI-RVH)

Akademický rok 2020/2021
Garant: Ing. Pavel Švancara, Ph.D.  
Garantující pracoviště: ÚMTMB všechny předměty garantované tímto pracovištěm
Jazyk výuky: čeština
Cíle předmětu:
Cílem předmětu je praktická a teoretická analýza hlučnosti strojů, výpočtové modelování jejich systémů za účelem snížení jejich vibrací a vyzařované akustické energie. Seznámení se s moderními metodami pro analýzu a řešení redukce vibrací a hluku strojů a se specializovanými programovými systémy pro jejich řešení. Dále bude věnována pozornost biomechanice vokálního traktu člověka a lidskému sluchovému orgánu. Funkce obou ústrojí budou analyzovány teoreticky, počítačovým modelováním pomocí metody konečných prvků a dále budou analyzovány rovněž experimentálně.
Výstupy studia a kompetence:
Provádět analýzu hlučnosti strojů, identifikovat zdroje vibrací a hluku, modelovat dynamické jevy v pracovních procesech strojů, realizovat aktivní i pasivní metody redukce vibrací a hluku. Analýzou hlučnosti strojů pak navrhnout příslušná konstrukční a další opatření taková, aby dynamické vlastnosti strojů byla ovlivněna žádaným směrem.
Prerekvizity:
Základy akustiky:
akustické vlnění, akustické veličiny (tlak, intenzita, výkon), spektra akustických signálů, experimentální analýza akustických veličin, akustická pole, spektrální a modální vlastnosti akustických kavit.
Matematika :
maticový počet, lineární algebra, diferenciální rovnice, základy metody konečných prvků.
Obsah předmětu (anotace):
Vibrace a hluk jsou průvodními jevy pracovních procesů všech strojních zařízení. Je zapotřebí analyzovat celý řetězec od zdrojů vibrací přes přenosové cesty struktury, zářiče hluku na povrchu strojů až po okolní akustické prostředí. Bioakustika se zabývá lidskými orgány a orgány dalších živých tvorů, jejichž funkce je vázána na využití zvukových vln, souhrnně na využití akustiky. Bioakustika se zabývá především generováním lidské řeči a percepcí sluchových vjemů.
Základní oblasti :
Akustické veličiny, vlnová rovnice a její řešení, spektra vibro-akustických veličin, akustické vlastnosti volných a uzavřených prostorů, mechanické a aerodynamické zdroje hluku.
Experimentální analýza akustických veličin, identifikace zdrojů vibrací a hluku.
Pasivní a aktivní metody snižování hluku.
Vibroakustické systémy strojů - modely deterministické (metoda konečných prvků MKP, metoda hraničních prvků MHP), modely statistické (statistická energetická analýza SEA), hybridní modely (MKP+SEA).
Biomechanika lidského hlasu a sluchu.
Metody vyučování:
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení:
Pro předmět je předepsán klasifikovaný zápočet.
Požadavky pro zápočet :
Zápočet je prováděn formou písemného testu na závěr semestru. Test se skládá z deseti otázek, pokrývající nejdůležitější oblasti předneseného předmětu. Vyhotovení správné odpovědi na méně než polovinu otázek je důvodem k neudělení zápočtu. V závěru semestru musí každý posluchač odevzdat požadovaný počet vyřešených dynamických problémů.
Účast na cvičení je povinná. Vedoucí cvičení provádějí průběžnou kontrolu přítomnosti studentů, jejich aktivity a základních znalostí. Neomluvená neúčast je důvodem k neudělení zápočtu.
Konkrétní podobu splnění těchto požadavků stanovuje vedoucí cvičení v prvním týdnu semestru.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Účast na cvičení je povinná. Kontrola výuky je prováděna systematicky, na cvičeních záznam účasti do seznamu studentů. Kontrola připravenosti studentů na výuku prováděna průběžně u jednotlivých studentů, případně krátkým testem. Náhrada zameškané výuky v případě řádné omluvy je prováděna doplněním chybějící látky a případně zadáním náhradních příkladů. Chybějící experimentální cvičení je nutno nahradit v jiném termínu.
Typ (způsob) výuky:
    Přednáška  13 × 2 hod. nepovinná                  
    Cvičení s počítačovou podporou  13 × 2 hod. povinná                  
Osnova:
    Přednáška 1. Akustické veličiny, vlnová rovnice a její řešení
2. Lineární a decibelové zobrazení, spektra akustických veličin: pásmová, trackingová, multispektra
3. Akustické vlastnosti otevřených a uzavřených prostorů
4. Mechanické a aerodynamické zdroje hluku - princip a příklady
5. Biomechanika tvorby lidského hlasu
6. Biomechanika lidského hlasu - hlasivky a jejich funkce
7. Biomechanika lidského sluchu
8. Psychoakustická hluková kritéria
9. Měření akustických veličin
10. Pasivní a aktivní metody snižování vibrací a hluku
11. Deterministické modely vibroakustických systémů: Metoda konečných prvků (MKP)
12. Deterministické modely vibroakustických systémů: Metoda hraničních prvků (MHP)
13. Statistické modely vibroakustických systémů (statistická energetická analýza SEA), hybridní modely (MKP+SEA)
    Cvičení s počítačovou podporou 1. Akustické veličiny a převody mezi nimi, pásmová spektra, decibelové stupnice
2. Spektrální a modální vlastnosti kavit
3. Šíření akustických vln ve volném prostoru, akustické zdroje
4. Vokální trakt, jeho spektrální a modální vlastnosti.
5. Hlasivky a jejich funkce
6. Experimentální analýza hlasu, formanty samohlásek
7. Lidské ucho: počítačové modelování
8. Identifikace zdrojů hluku, akustické zářiče
9. Akustický výkon vyzařovaný strojem
10.-11. Modelování vibroakustického systému pomocí MKP
12. Statistické modely, modelování pomocí metody SEA
13.Zápočet
Literatura - základní:
1. Nový, R.: Hluk a chvění, České vysoké učení technické, Praha, 2009
2. Beranek, L.L.: Acoustics: Sound Fields and Transducers, Academic press, Oxford, 2012
3. Titze, I. R., Alipour, F.: The Myoelastic Aerodynamic Theory of Phonation, National Center for Voice and Speech, Denver and Iowa City, 2006
Literatura - doporučená:
1. Mišun, V.: Vibrace a hluk, Vysoké učení technické, Brno, 1998
2. Rossin, T. D., editor: Springer Handbook of Acoustics, Springer, Würzburg, 2007
3. Ohayon, R., Soize, C.: Structural Acoustic and Vibration, Academic Press, London, 1998
4. Beer, G., Smith, I., Duenser, Ch.: The Boundary Element Method with Proramming, Springer-Verlag, 2008
5. Lyon, R. H., DeJong, R.G: Theory and Application of Statistical Energy Analysis, Butterwortth-Heinemann, Boston, 1995
Zařazení předmětu ve studijních programech:
Program Forma Obor Spec. Typ ukončení   Kredity     Povinnost     St.     Roč.     Semestr  
M2A-P prezenční studium M-IMB Inženýrská mechanika a biomechanika -- kl 5 Povinně volitelný 2 2 Z