Elektrodynamika a speciální teorie relativity (FSI-TDE)

Akademický rok 2022/2023
Garant: prof. RNDr. Petr Dub, CSc.  
Garantující pracoviště: ÚFI všechny předměty garantované tímto pracovištěm
Jazyk výuky: čeština
Cíle předmětu:

Předmět představuje druhou část úvodního kursu Teoretická fyzika a navazuje na předmět Elektřina a magnetismus z kursu Obecná fyzika. Úkolem kursu teoretické fyziky je rozvinout a upevnit znalosti a dovednosti získané v kursech obecné fyziky, ukázat nové souvislosti, rozvinout matematický formalismus a objasnit způsoby popisování teorie, a tak vybudovat hlubší porozumění fyzice.

Výstupy studia a kompetence:
Znalost základních zákonů klasické elektrodynamiky a schopnost je užít pro popis fyzikálních situací a systémů a vysvětlení jejich chování. Získané znalosti jsou předpokladem pro pochopení teoretických základů celé řady moderních fyzikálních a inženýrských disciplin.
Prerekvizity:
Znalosti elektromagnetismu na úrovni učebnice HALLIDAY, D. - RESNICK, R. - WALKER, J.: Fyzika, VUTIUM, Brno 2001.
MATEMATIKA: Základy vektorové analýzy.
Pro tento předmět je prerekvizitou předmět TF2 (Elektřina a magnetismus).

Vazby k jiným předmětům:
povinná prerekvizita: Obecná fyzika II (Elektřina a magnetismus) [TF2]

Obsah předmětu (anotace):

Výklad vychází z Maxwellových rovnic (v integrálním a diferenciálním tvaru), které jsou nejprve užity pro studium statických polí. Následuje popis proměnných polí pomocí vektorů pole a potenciálů pole. Elektrodynamika je poté vyložena pomocí čtyřvektorového formalismu, který efektivně propojuje elektrodynamiku se speciální teorií relativity. Závěr kurzu je věnován elektromagnetickému poli v látkovém prostředí a problematice záření.

Metody vyučování:
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení:
Podmínkou pro udělení ZÁPOČTU je účast ve cvičeních, samostatné řešení úloh z teorie elektromagnetického pole (písemně i ústně).
ZKOUŠKA sestává z části písemné a ústní. V písemné části bude zadána úloha podobná příkladům, které byly řešeny na cvičeních.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Účast na cvičeních je kontrolována.
Typ (způsob) výuky:
    Přednáška  13 × 3 hod. nepovinná                  
    Cvičení  13 × 2 hod. povinná                  
Osnova:
    Přednáška 1. Maxwellovy rovnice ve vakuu
Formulace zákonů elektrodynamiky v integrálním a diferenciálním tvaru pro vakuum. Hledání souvislostí a formulace úloh.
2. Matematický úvod
Greenova věta a její užití, Greenovy funkce, Diracova delta funkce, Fourierova transformace.
3. Elektrostatika
Poissonova rovnice a její řešení, Intenzita elektrického pole soustavy nábojů, Coulombův zákon. Multiplový rozvoj (kulové funkce), elektrický dipól. Energie soustavy nábojů a energie elektrického pole, Elektrické pole v dielektriku (polární a nepolární dielektrika, tři elektrické vektory: E, P, D, Gaussův zákon pro dielektrikum).
4. Magnetostatika
Vektorový potenciál, řešení diferenciální rovnice pro vektorový potenciál. Biotův-Savartův zákon. Magnetický dipól. Energie magnetického pole. Magnetické pole v látkovém prostředí (diamagnetika a paramagnetika, tři magnetické vektory B, M, H, Ampérův zákon pro látkové prostředí). Veličiny a zákony pro elektrické a magnetické pole, analogie a rozdíly.
5. Maxwellovy rovnice (ve vakuu) a zákony zachování
Maxwellovy rovnice v soustavě SI a cgs. Rovnice kontinuity. Poyntingův teorém. Hybnost a moment hybnosti elektromagnetického pole.
6. Maxwellovy rovnice (ve vakuu) a elektromagnetické vlny
Odvození vlnové rovnice. Pokus o řešení vlnové rovnice se zdroji pole (dyadická Greenova funkce). Helmholzova rovnice a její řešení. Rovinná vlna.
7. Elektromagnetické pole v látkovém prostředí
Od Maxwellových rovnic ve vakuu k rovnicím v látkovém prostředí. Materiálové vztahy. Okrajové podmínky na rozhraní dvou prostředí. Maxwellovy rovnice v látkovém prostředí a zákony zachování. Disperzní prostředí (odezvová funkce, Fourierova transformace). Vlnová rovnice v látkovém prostředí. Elektromagnetické vlny v kovu, telegrafní rovnice. Kvazistatická aproximace, skinový efekt. Elektromagnetické vlny v izotropním a anizotropním dielektriku, a v metamateriálech.
8. Potenciály elektromagnetického pole
Zavedení potenciálů, kalibrační transformace. Řešení vlnové rovnice pro potenciály (rovinná a kulová vlna, elektromagnetické pole v dutině, retardované a avanceované potenciály.
9. Záření kmitajícího elektrického dipólu
Blízké a vzdálené pole
10. Liénardův-Wiechertův potenciál (základní informace)
Pole náboje pohybujícího se bez zrychlení, Heavisidovo pole, pole náboje pohybujícího se zrychlením a energie jím vyzařovaná (Larmorova formule),synchrotronové záření. Dodatek: radiační tlumení
11. Speciální teorie relativity
Elektrodynamika a relativita, transformace polí. Lorentzova transformace. Čtyřvektory. Elektrodynamika ve čtyřvektorovém formalismu.
12. Pohyb nábojů v elektrických a magnetických polích.
    Cvičení Téma: Elektrostatika
Metoda zrcadlení. Řešení Laplaceovy/Poissonovy rovnice v kartézských, cylindrických a sférických souřadnicích: pole nabitého vlákna mezi uzemněnými deskami, pole bodového náboje uvnitř uzemněné válcové plochy (Besselovy funkce), válec v homogenním elektrickém poli, koule v homogenním elektrickém poli (Legendreovy polynomy a kulové funkce). Energie elektromagnetického pole nabité koule.
Téma: Magnetostatika
Magnetické pole rotující nabité koule.
Téma: Kvazistacionární pole
Skinový jev.
Téma: Zákony zachování
Feynmanův disk.
Téma: Proměnné elektromagnetické pole
Kondenzátor na vysokých frekvencích. Vlnová rovnice a její řešení v kartézských souřadnicích. Rovinná vlna. Planární vlnovod.
Téma: Speciální teorie relativity
Transformace čtyřvektorů. Elektrické a magnetické pole rovnoměrně (a rychle) se pohybujícího náboje.
(http://physics.fme.vutbr.cz/ufi.php?Action=0&Id=977)
Další problémy jsou řešeny ve volitelném (nepovinném) předmětu Fyzikální proseminář IV.
Literatura - základní:
1. D. J. GRIFFITHS: Introduction to electrodynamics. Addison-Wesley, 2012.
2. Landau L. D., Lifshic J. M.: The clasical theory of fields. Butterworth-Heinemann, 2000.
3. Feynman R.P., Leigton R.B., Sands M.: Feynmanovy přednášky z fyziky, Fragment, 2001
4. B. SEDLÁK, I. ŠTOLL: Elektřina a magnetismus. Karolinum, 2012.
Literatura - doporučená:
1. D. J. Griffiths: Introduction to Electrodynamics.Addison-Wesley, 2012.
2. FEYNMAN, R.P.-LEIGHTON, R.B.-SANDS, M.: Feynmanovy přednášky z fyziky, Fragment, 2001
3. Landau L. D., Lifshic J. M.: The clasical theory of fields. Butterworth-Heinemann, 2000.
4. B. SEDLÁK, I. ŠTOLL: Elektřina a magnetismus. Karolinum, 2012.
5. E. M. Purcell, D. J. Morin: Electricity and Magnetism. 3rd edition, Cambridge University Press 2013
Zařazení předmětu ve studijních programech:
Program Forma Obor Spec. Typ ukončení   Kredity     Povinnost     St.     Roč.     Semestr  
CŽV prezenční studium CZV Základy strojního inženýrství -- zá,zk 6 Povinný 1 1 L
B-FIN-P prezenční studium --- bez specializace -- zá,zk 6 Povinný 1 2 L