Elektrické pohony (FSI-RRY)

Akademický rok 2023/2024
Garant: doc. Ing. Pavel Vorel, Ph.D.  
Garantující pracoviště: UVEE  
Jazyk výuky: čeština
Cíle předmětu:
Seznámení s pojmy a základy elektrických pohonů v teoretické i praktické úrovni v souvislosti s požadavky na profil bakaláře.
Výstupy studia a kompetence:
Absolvent předmětu je schopen:
- matematicky popsat běžné druhy momentově – otáčkových charakteristik poháněných zařízení, jak v závislosti na absolutní hodnotě rychlosti, tak na pracovním kvadrantu.
- přepočítat moment setrvačnosti poháněné soustavy na hřídel motoru.
- z napěťové a pohybové rovnice odvodit frekvenční přenosy a z nich sestavit matematický model stejnosměrného motoru.
- nakreslit a vysvětlit funkci všech možných zapojení silové části DC/DC měniče pro napájení motorů.
- sestavit matematické modely stejnosměrného měniče a všech souvisejících čidel.
- vysvětlit funkci kaskádní regulační struktury stejnosměrného pohonu a popsat všechny vnitřní vazby.
- syntetizovat regulátory proudu a otáček pro stejnosměrný pohon metodou optimálního modulu a symetrického optima
- vypočítat odezvu navržené regulační smyčky na skok žádané hodnoty či poruchy
- popsat pohony s asynchronními motory z uživatelského pohledu, vysvětlit možnosti řízení jejich otáček.
- nakreslit silové schéma frekvenčního měniče pro asynchronní motor, vysvětlit princip sinusové PWM a podstatu skalárního řízení.
- popsat co je odbuzování asynchronního motoru, vysvětlit oblasti konstantního momentu a konstantního výkonu.
- vyjmenovat ztráty v elektrickém pohonu, dimenzovat elektrický pohon prostřednictvím ekvivalentních metod.
- posoudit vhodnost jednotlivých typů motorů a měničů pro konkrétní průmyslové a trakční aplikace.

Výstupy z počítačových a laboratorních cvičení
Student umí:
- založit projekt v programu Matlab – Simulink a ovládat jeho základní knihovní funkce
- namodelovat pohybovou rovnici mechanismu
- vytvořit simulační model stejnosměrného stroje jak s cizím buzením tak s PM.
- vytvořit model proudové smyčky stejnosměrného pohonu s měničem
- vytvořit zpětnovazební model nadřazené otáčkové smyčky
- vytvořit zjednodušený model polohové smyčky
- základě výsledku simulace pracovního cyklu elektrického pohonu, stanovit ztráty a dimenzovat tak součásti pohonu (motor + měnič)
- realizovat regulátory otáček a proudu navržené dle SO a OM pomocí analogových obvodů
- provést analýzu ztrát pohonu se synchronním motorem na základě dynamometrem naměřených hodnot
Prerekvizity:
Jsou požadovány znalosti na úrovni středoškolského studia.
Navíc musí student umět:
- obecně vysvětlit principy elektrických strojů
- počítat s komplexními čísly
- aplikovat diferenciální rovnice pro popis elektromechanických systémů jak v časové oblasti, tak v operátorovém tvaru
- ovládat softwarový nástroj MATLAB SIMULINK na základní úrovni
- studenti musí být přezkoušeni podle vyhlášky 50
Obsah předmětu (anotace):
Základní kurs navazuje na mechaniku, teorii elektrických strojů a výkonovou elektroniku, vytváří syntetizující pohled na požadavky a možnosti elektrických pohonů. Vysvětluje principy a metody stanovení výkonových částí a uzlů při respektování statických a dynamických vlastností DC a AC motorů ve spojení s výkonovými polovodičovými měniči. Jedním z hlavních cílů kursu je syntéza kaskádní regulační struktury elektrického pohonu se stejnosměrným motorem. Aplikační oblast pak zahrnuje veškeré pracovní mechanismy přeměňující elektrickou energii v mechanickou práci v rozličných pracovních strojích na různých výkonových úrovních. Na přednášky navazují laboratorní cvičení, ve kterých si studenti ověřují teoretické poznatky.
Metody vyučování:
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách. Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT
Způsob a kritéria hodnocení:
Průběžné hodnocení laboratorní i numerické výuky. Zkouška obsahuje písemnou i ústní část. Konkrétní podmínky pro úspěšné ukončení předmětu stanoví každoročně aktualizovaná vyhláška garanta předmětu.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Účast na cvičení je povinná.
Typ (způsob) výuky:
    Přednáška  13 × 2 hod. nepovinná                  
    Cvičení s počítačovou podporou  13 × 1 hod. povinná                  
Osnova:
    Přednáška 1. Blokové schéma el. pohonu.
2. Rozdělení regulačních pohonů, řízení, regulace.
3. Mechanika pohonů, pohybové rovnice
4. Typy motorů pro regulační pohony a jejich základní vlastnosti
5. Stejnosměrný motor, náhradní schéma, matematický model, statický, dynamický
6. Tranzistorový měnič jako dynamický člen z pohledu teorie regulace
7. Kaskádní regulace v elektrických pohonech, princip, struktura, stabilita
8. Metody návrhu regulačních smyček proudu a rychlosti, jejich srovnání, vliv poruch.
9. Mechanické charakteristiky motorů a pracovních mechanismů
10. Ztráty v pohonu, dimenzování, ekvivalentní metody
11. Pohony sériovým buzením, odbuzování, SS motor v trakci
12. Pohony s AS motory, frekvenční měniče, softstarty
13. Pohony se synchronními motory, EC motor
    Cvičení s počítačovou podporou Cvičení numerické a cvičení na počítačích:
1. Kinematika elektropohonu, zatěžovací charakteristiky
2. Metody redukce zatěžovacího momentu a momentu setrvačnosti
3. Dynamika elektropohonu, pohybová rovnice
4. Model stejnosměrného stroje
5. Syntéza regulační smyčky proudu
6. Syntéza regulační smyčky otáček
Laboratorní úlohy:
7. Úvodní hodina, seznámení s laboratorními bezpečnostními předpisy, obsluha laboratorních přístrojů.
8. Měření na asynchronním motoru
9. Regulace otáček stejnosměrného motoru
10. Měření na EC motoru
11. Ventilátorová zatěžovací charakteristika
12. Odevzdání protokolů, doměřování úloh
Literatura - základní:
1. O. Kelly: Performance and Control of Electrical Machines, , 0
2. Pavelka, J., Čeřovský, Z., Javůrek, J.: Elektrické pohony, skripta ČVUT Praha, 1996
3. Bose, B.,K a j.: Power Electronics and Variable Frequency Drives, , 0
4. Kubík, Z. a kol. : Teorie automatického řízení I., , 0
5. Caha, Z., Černý, M.: Elektrické pohony SNTL Praha, 1990
Literatura - doporučená:
1. Stemme,O.,Wolf,.: Principles and properties of Highly Dynamic DC Miniature Motors. Interelectric AG,1994.
2. Accarnley,P.: Stepping Motors -a quide to modern theory and practice . IEE Control Engineering Series 19,1984.
3. T.Kenjo.,A.Sugawara .: Stepping motors and their microprocessor controls. Second edition.Clarendon press,Oxford 2000.
4. W.H.Yeadon,A.W.Yeadon.:Handbook of Small Electric Motors. McGraw Hill, 2004
5. Ueha,Tomikawa, Kurosawa,Nakamura.:Ultrasonic motors - Theory and Applications.
6. www.maxonmotor.com
7. www.minimotor.ch
Zařazení předmětu ve studijních programech:
Program Forma Obor Spec. Typ ukončení   Kredity     Povinnost     St.     Roč.     Semestr  
B-MET-P prezenční studium --- bez specializace -- zá,zk 5 Povinný 1 3 L