Systémy reálného času a LabVIEW (FSI-RSD)

Akademický rok 2021/2022
Garant: Ing. Petr Krejčí, Ph.D.  
Garantující pracoviště: ÚMTMB všechny předměty garantované tímto pracovištěm
Jazyk výuky: čeština
Cíle předmětu:
Cílem předmětu je seznámení posluchačů s programováním systémů reálného času a FPGA systémů s využitím prostředků programového prostředí NI LabView.
Výstupy studia a kompetence:
Studenti získají nebo prohloubí své znalosti v oblasti práce a programování Real –Time aplikací s využitím FPGA technologie založené na bázi programového prostředí NI LabView, který je dnes průmyslovým standardem v řadě technických odvětví. Absolvent kursu bude schopen definovat strukturu řídícího programu a pracovat s potřebným hardwarovým vybavením nezbytným pro RT aplikace.
Prerekvizity:
Základy programování a algoritmizace problému.
Obsah předmětu (anotace):
Náplň předmětu je zaměřena na doplnění teoretických i praktický znalostí studentů v oblasti real-time aplikací, jejich programování a využití například v oblastech řízení a HIL/PHIL simulací. Předmět se také zabývá využitím FPGA prostředků v real-time aplikacích. Hlavním pracovním nástrojem je prostředí NI Labview se zaměřením na pokročilejší vlastnosti a funkce. Teoretické poznatky přednesené v rámci přednášek jsou v laboratorním cvičení demonstrovány na konkrétních příkladech zpracovaných pro HW NI MyRIO, popřípadě SbRIO.
Metody vyučování:
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí přednášené problematiky.
Způsob a kritéria hodnocení:
Předmět je hodnocen na základě aktivní účasti na cvičení, zápočtového testu a zpracování zadaného týmového projektu s vymezení podílu studenta na řešení projektu.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Účast je povinná. Neomluvená absence je důvodem k neudělení zápočtu. Jednorázová neúčast může být nahrazena cvičením s jinou skupinou ve stejném týdnu nebo vypracováním náhradní úlohy. Delší nepřítomnot se nahrazuje zvláštním zadáním podle pokynů cvičícího.
Typ (způsob) výuky:
    Přednáška  13 × 2 hod. nepovinná                  
    Laboratorní cvičení  13 × 2 hod. povinná                  
Osnova:
    Přednáška 1. Úvod do problematiky systémů reálného času, jejich využití v mechatronice
2. Úvod do programování v prostředí NI LabView
3. Systémy reálného času – RTOS, hardwarové požadavky, vymezení základních pojmů
4. Využití systému Labview v systémech reálného času I
5. Využití systému Labview v systémech reálného času II
6. Úvod do technologie FPGA
7. Nástroje pro generování kódu pro FPGA – VHDL / FPGA toolbox v Labview
8. Implementace FPGA kódu do NI LabView– základní konstrukce funkčního kódu
9. Práce s FPGA – pokročilé techniky tvorby funkčního kódu (SCTL, Pipelineing)
10. Využití Labview pro vývoj embeded zařízení
11. Prostředky pro tvorbu HIL a PHIL simulátorů – požadavky na hardwarové a softwarové vybavení
12. Periferie mikrokontrolerů a jejich využití v embeded aplikacích
13. Definice zadání týmových studentských projektů, stanovení cílů řešení a způsobů hodnocení
    Laboratorní cvičení Koresponduje s obsahem přednášek. Cílem cvičení je studenty seznámit s praktickou částí předmětu především prostřednictvím systému NI LabView a praktické poznatky aplikovat do řešení samostatných týmových projektů. Tematicky lze cvičení rozdělit na bloky:

Základy programování v Labview, sjednocení znalostí.
Základy programování v Labview, událostmi řízené programování.
Programování projektů v Labview, sdílení dat mezi platformami
Využití LabView pro simulace (konverze modelů mezi Matlab/Simulink a Labview)
Základy a specifika programování Real – Time aplikací, řešení priorit a definice proměnných
Základy a specifika programování FPGA aplikací. Fix – point aritmetika.
FPGA Single cycle time loop, předávání dat mezi FPGA a real time aplikací
FPGA Pipelining
Definice projektových zadání, tvorba řešitelských týmů a definice kompetencí v rámci týmu
Literatura - základní:
1. BOLTON, W. Mechatronics: Electronic Control Systems in Mechanical Engineering. Pearson Education Limited, 2015. 664 p. ISBN: 9781292076683.
2. Kilts, S. Advanced FPGA Design : Architecture, Implementation, and Optimization. John Wiley & Sons Inc., 2007. 352 p. ISBN: 9780470054376
3. Essick, J. Hands-on introduction to labview for scientists and engineers. Oxford University Press Inc., 2018. 720 p. ISBN: 9780190853068
Literatura - doporučená:
1. Essick, J. Hands-on introduction to labview for scientists and engineers. Oxford University Press Inc., 2018. 720 p. ISBN: 9780190853068
Zařazení předmětu ve studijních programech:
Program Forma Obor Spec. Typ ukončení   Kredity     Povinnost     St.     Roč.     Semestr  
N-MET-P prezenční studium --- bez specializace -- zá,zk 7 Povinný 2 2 Z