Akademický rok 2021/2022 |
Garant: | doc. Mgr. Zuzana Hübnerová, Ph.D. | |||
Garantující pracoviště: | ÚM | |||
Jazyk výuky: | čeština | |||
Typ předmětu: | teoretický základ, aplikační základ | |||
Cíle předmětu: | ||||
Cílem předmětu je seznámit studenty se základy teorie stochastických procesů a s používanými modely pro analýzu časových řad i algoritmy odhadu jejich parametrů. Ve cvičení se studenti učí na simulovaných nebo reálných datech prakticky aplikovat teoretické postupy formou projektu pomocí vhodného softwaru. Výsledkem je projekt vyhodnocení a predikce reálných časových řad. | ||||
Výstupy studia a kompetence: | ||||
Předmět umožňuje studentům získat základní znalosti o modelování stochastických procesů (dekompoziční model, ARMA) a způsobech výpočtu odhadu jejich nejrůznějších charakteristik s cílem popsat mechanismus chování procesu na základě pozorování jeho časové řady. Student tak zvládne základní metody pro vyhodnocování reálných dat. | ||||
Prerekvizity: | ||||
Základy diferenciálního a integrálního počtu, teorie pravděpodobnosti a matematické statistiky. | ||||
Obsah předmětu (anotace): | ||||
Předmět obsahuje úvod do teorie náhodných procesů: typy a základní vlastnosti, stacionarita, autokovarianční funkce, spektrální hustota, příklady typických procesů, parametrické a neparametrické metody dekompozice časových řad, identifikace period, ARMA procesy. Studenti se seznámí s užitím těchto metod pro popis a predikci časových řad na PC pomocí vhodných softwarů. | ||||
Metody vyučování: | ||||
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách. | ||||
Způsob a kritéria hodnocení: | ||||
Podmínky udělení zkoušky: aktivní účast ve cvičení, prokázání základních dovedností pro praktickou analýzu dat na PC, klasifikace je výsledkem hodnocení průběžných písemných testů, resp. ústní zkoušky, a samostatného projektu analýzy dat. | ||||
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky: | ||||
Účast na cvičení je povinná a o náhradě zameškané výuky rozhoduje učitel cvičení. | ||||
Typ (způsob) výuky: | ||||
Přednáška | 13 × 2 hod. | nepovinná | ||
Cvičení s počítačovou podporou | 13 × 1 hod. | povinná | ||
Osnova: | ||||
Přednáška | Stochastický proces, typy. Striktní a slabá stacionarita. Autokorelační funkce (vlastnosti). Výběrová autokorelační funkce. Dekompoziční model (aditivní, multiplikativní), stabilizace rozptylu. Odhad trendu bez sezónnosti (lineární filtry, polynomiální regrese). Odhad trendu se sezónností. Testy náhodnosti. Lineární procesy. ARMA(1,1) procesy. Asymptotické vlastnosti odhadů střední hodnoty a autokorelační funkce. Nejlepší lineární predikce v ARMA(1,1). Durbin-Levinsonův a inovační algoritmus. ARMA(p,q) procesy, kauzalita, invertibilita, parciální autokorelační funkce. Spektrální hustota (vlastnosti). Identifikace periodických komponent: periodogram, testy periodicity. Nejlepší lineární predikce, Yuleův-Walkerův systém rovnic, chyba predikce. ARIMA modely a nestacionární stochastické procesy. |
|||
Cvičení s počítačovou podporou | Načítání, ukládání a vizualizace dat, simulace stochastických procesů. Momentové charakteristiky stochastických procesů Detekce heteroskedasticity. Transformace stabilizující rozptyl (mocninná, Box-Coxova). Užití lineárního regresního modelu při dekompozici časové řady. Separace sezónní složky. Odstranění šumu pomocí lineární filtrace (metoda klouzavých vážených průměrů), Spencerovy 15-ti bodové váhy. Filtrování pomocí po částech polynomiální regrese, exponenciálního vyrovnávání. Testy náhodnosti. Simulace, identifikace a odhad parametrů modelu ARMA. Predikce procesu. Testování významnosti (parciálních) korelací. Identifikace periodických složek, periodogram, testování. Konzultace k projektům studentů. |
|||
Literatura - základní: | ||||
1. Brockwell, P.J. - Davis, R.A. Introduction to time series and forecasting. 3rd ed. New York: Springer, 2016. 425 s. ISBN 978-3-319-29852-8. | ||||
2. Cipra, Tomáš. Analýza časových řad s aplikacemi v ekonomii. 1. vyd. Praha : SNTL - Nakladatelství technické literatury, 1986. 246 s. | ||||
3. Brockwell, P.J. - Davis, R.A. Time series: Theory and Methods. 2-nd edition 1991. New York: Springer. ISBN 978-1-4419-0319-8. | ||||
Literatura - doporučená: | ||||
1. Ljung, L. System Identification-Theory For the User. 2nd ed. PTR Prentice Hall : Upper Saddle River, 1999. | ||||
2. Hamilton, J.D. Time series analysis. Princeton University Press, 1994. xiv, 799 s. ISBN 0-691-04289-6. |
Zařazení předmětu ve studijních programech: | |||||||||
Program | Forma | Obor | Spec. | Typ ukončení | Kredity | Povinnost | St. | Roč. | Semestr |
IT-MGR-2 | prezenční studium | MBI Bioinformatika a biocomputing | -- | zá,zk | 4 | Volitelný | 1 | 0 | L |
IT-MGR-2 | prezenční studium | MBS Bezpečnost informačních technologií | -- | zá,zk | 4 | Volitelný | 1 | 0 | L |
IT-MGR-2 | prezenční studium | MMM Matematické metody v informačních technologiích | -- | zá,zk | 4 | Povinně volitelný | 1 | 0 | L |
IT-MGR-2 | prezenční studium | MPV Počítačové a vestavěné systémy | -- | zá,zk | 4 | Volitelný | 1 | 0 | L |
IT-MGR-2 | prezenční studium | MSK Počítačové sítě a komunikace | -- | zá,zk | 4 | Volitelný | 1 | 0 | L |
N-MAI-P | prezenční studium | --- bez specializace | -- | zá,zk | 4 | Povinný | 2 | 1 | L |
Vysoké učení technické v Brně
Fakulta strojního inženýrství
Technická 2896/2,
616 69 Brno
IČ 00216305
DIČ CZ00216305
+420 541 141 111
+420 726 811 111 – GSM O2
+420 604 071 111 – GSM T-mobile