Akademický rok 2021/2022 |
Garant: | Ing. Josef Bednář, Ph.D. | |||
Garantující pracoviště: | ÚM | |||
Jazyk výuky: | čeština | |||
Cíle předmětu: | ||||
Seznámení studentů se základními pojmy, metodami a postupy teorie pravděpodobnosti, popisné statistiky a matematické statistiky. Formování stochastického způsobu myšlení studentů pro modelování reálných jevů a procesů ve strojírenských oborech. | ||||
Výstupy studia a kompetence: | ||||
Studenti získají potřebné znalosti z teorie pravděpodobnosti, popisné statistiky a matematické statistiky, které jim umožní pochopit a aplikovat stochastické modely technických jevů a procesů, založené na těchto metodách. | ||||
Prerekvizity: | ||||
Základy diferenciálního a integrálního počtu. | ||||
Obsah předmětu (anotace): | ||||
Předmět je zaměřen na seznámení studentů s metodami popisné statistiky, základy teorie pravděpodobnosti (náhodné jevy, pravděpodobnost, náhodná veličina, náhodný vektor) a matematické statistiky (náhodný výběr, odhady parametrů, testování statistických hypotéz, lineární regresní analýza). Úlohy na procvičení látky jsou orientovány na praktické aplikace ve strojírenských oborech. Počítačovou podporou je nepovinný předmět Statistický software. | ||||
Metody vyučování: | ||||
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách. | ||||
Způsob a kritéria hodnocení: | ||||
Podmínky udělení zápočtu: aktivní účast ve cvičeních, zvládnutí celé látky, součet hodnocení obou kontrolních prací a písemné semestrální práce aspoň 12 bodů. Zkouška (písemná forma): praktická část (2 příklady z teorie pravděpodobnosti: pravděpodobnost a její vlastnosti, náhodná veličina, rozdělení Bi,H,Po,N a diskrétní náhodný vektor; 2 příklady z matematické statistiky: bodové a intervalové odhady parametrů, testy hypotéz o rozděleních a parametrech, lineární regresní model) s vlastním přehledem vzorců; teoretická část (5 otázek na základní pojmy, jejich vlastnosti, význam a praktické užití); hodnocení: každý příklad 0 až 15 bodů a každá teoretická otázka 0 až 3 body; klasifikace podle celkového součtu bodů ze zkoušky a cvičení: výborně (90 až 100 bodů), velmi dobře (80 až 89 bodů), dobře (70 až 79 bodů), uspokojivě (60 až 69 bodů), dostatečně (50 až 59 bodů), nevyhovující(0 až 49 bodů). | ||||
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky: | ||||
Cvičení je kontrolované a o náhradě zameškané výuky rozhoduje učitel cvičení. | ||||
Typ (způsob) výuky: | ||||
Přednáška | 13 × 2 hod. | nepovinná | ||
Cvičení | 13 × 2 hod. | povinná | ||
Cvičení s počítačovou podporou | 13 × 1 hod. | povinná | ||
Osnova: | ||||
Přednáška | 1. Náhodné jevy a jejich pravděpodobnost. 2. Podmíněná pravděpodobnost. Nezávislé jevy. 3. Náhodná veličina, druhy, funkční charakteristiky. 4. Číselné charakteristiky náhodné veličiny. 5. Základní diskrétní rozdělení Bi, H, Po (vlastnosti a užití). 6. Základní spojitá rozdělení R, N (vlastnosti a užití). 7. Dvourozměrný diskrétní náhodný vektor, druhy, funkční a číselné charakteristiky. 8. Náhodný výběr, výběrové charakteristiky (vlastnosti, výběr z N). 9. Odhady parametrů (bodové a intervalové odhady parametrů N a Bi). 10. Testování statistických hypotéz (druhy, základní pojmy, test). 11. Testy hypotéz o parametrech N, Bi a testy rozdělení. 12. Základy regresní analýzy. 13. Lineární regresní model, odhady a testy hypotéz. |
|||
Cvičení | 1. Popisná statistika (jednorozměrný statistický soubor). 2. Popisná statistika (dvourozměrný statistický soubor). Kombinatorika. 3. Pravděpodobnost (výpočty pomocí m/n a vlastností). Zadání semestrální práce. 4. Podmíněná pravděpodobnost. Nezávislé jevy. 5. Písemná práce (3 příklady, maximálně 10 bodů). Funkční a číselné charakteristiky náhodné veličiny. 6. Funkční a číselné charakteristiky náhodné veličiny - dokončení. 7. Základní rozdělení pravděpodobnosti(Bi, H, Po, N). 8. Dvourozměrný diskrétní náhodný vektor, funkční a číselné charakteristiky. 9. Písemná práce (3 příklady, maximálně 10 bodů). 10. Bodové a intervalové odhady parametrů N a Bi. 11. Testy hypotéz o parametrech N. 12. Testy hypotéz o parametrech N a Bi - dokončení. Testy rozdělení. 13. Lineární regrese (přímka), odhady, testy a graf. Hodnocení semestrální práce (maximálně 5 bodů). |
|||
Cvičení s počítačovou podporou | 1. Seznámeni se statistickým softwarem 2. Popisná statistika (jednorozměrný statistický soubor, dvourozměrný statistický soubor). 3. Základní rozdělení pravděpodobnosti(Bi, H, Po, N). 4. Bodové a intervalové odhady parametrů N a Bi. 5. Testy hypotéz o parametrech N a Bi - dokončení. Testy rozdělení. 6. Lineární regrese (přímka), odhady, testy a graf. |
|||
Literatura - základní: | ||||
1. Montgomery, D. C. - Renger, G.: Applied Statistics and Probability for Engineers. New York : John Wiley & Sons, 2017. | ||||
2. Hahn, G. J. - Shapiro, S. S.: Statistical Models in Engineering.New York : John Wiley & Sons, 1994. | ||||
3. Anděl, J.: Základy matematické statistiky. Praha : Matfyzpress, 2005. | ||||
Literatura - doporučená: | ||||
1. Karpíšek, Z.: Matematika IV. Pravděpodobnost a statistika. Učební text FSI VUT v Brně. Akademické nakladatelství CERM: Brno, 2003. | ||||
2. Karpíšek, Z., Drdla, M.: Applied Statistics. Textbook. Brno : FME BUT, 2007. File ApplStat2007.pdf |
||||
3. Meloun, M. - Militký, J.: Statistické zpracování experimentálních dat. Praha : Plus, 1994. |
Zařazení předmětu ve studijních programech: | |||||||||
Program | Forma | Obor | Spec. | Typ ukončení | Kredity | Povinnost | St. | Roč. | Semestr |
B-FIN-P | prezenční studium | --- bez specializace | -- | zá,zk | 5 | Povinný | 1 | 2 | L |
B-ZSI-P | prezenční studium | STI Základy strojního inženýrství | -- | zá,zk | 5 | Povinný | 1 | 2 | L |
B-ZSI-P | prezenční studium | MTI Materiálové inženýrství | -- | zá,zk | 5 | Povinný | 1 | 2 | L |
B-MET-P | prezenční studium | --- bez specializace | -- | zá,zk | 5 | Povinný | 1 | 2 | L |
N-PMO-P | prezenční studium | --- bez specializace | -- | zá,zk | 5 | Povinně volitelný | 2 | 1 | L |
Vysoké učení technické v Brně
Fakulta strojního inženýrství
Technická 2896/2,
616 69 Brno
IČ 00216305
DIČ CZ00216305
+420 541 141 111
+420 726 811 111 – GSM O2
+420 604 071 111 – GSM T-mobile