Počítačová podpora technologie (FSI-DPP)

Akademický rok 2024/2025
Garant: Ing. Jan Řiháček, Ph.D.  
Garantující pracoviště: ÚST všechny předměty garantované tímto pracovištěm
Jazyk výuky: čeština
Typ předmětu: oborový předmět
Cíle předmětu:

Cílem předmětu je seznámit studenty se základními možnostmi využití počítačové podpory v technologii a se základy práce v jednotlivých oblastech této problematiky. Studenti budou mít přehled o tom, co mohou očekávat od výsledků počítačové podpory v praxi. Předmět cílí především na osvojení dovedností nutných pro základní práci se simulačními softwary.

 

Studenti budou seznámeni s teorií, jakož i s nejnovějšími poznatky v oboru virtuální výroby a numerických simulací. Získají základní dovednosti pro formulaci a řešení výpočetních modelů v oblastech tváření a svařování.

Výstupy studia a kompetence:
 
Prerekvizity:

Základní znalost strojírenské technologie a počítačová gramotnost.

Obsah předmětu (anotace):

Předmět seznamuje studenty s možnostmi počítačové podpory v různých oblastech návrhu výroby, zejména pak s využitím numerické simulace a metody konečných prvků (MKP), jako nástroje pro analýzu a optimalizaci technologických procesů. V rámci přednášek jsou studenti seznámeni s podstatou využití počítačové podpory a numerických simulací pro řešení deformačně-napěťových a teplotních úloh, které jsou úzce spjaty s problematikami technologií tváření a svařování. Cvičení předmětu cílí především na praktické výpočty a osvojení si hlavních zásad tvorby výpočtových modelů. Studenti tak především získají základní orientaci v problematice numerických simulací a analýz využívajících metodu konečných prvků. 

Metody vyučování:
 
Způsob a kritéria hodnocení:

Udělení klasifikovaného zápočtu je podmíněno vypracováním zadaných numerických analýz v rámci práce s vybraným softwarem MKP a prokázáním teoretických znalostí v podobě písemného testu. Hodnotí se klasifikačním stupněm ECTS.
Účast na přednáškách je doporučená. Účast na cvičeních je povinná. Docházka do cvičení je pravidelně kontrolována a účast ve výuce je zaznamenávána. V případě zameškané výuky může učitel v odůvodněných případech stanovit náhradní zadání cvičení.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
 
Typ (způsob) výuky:
    Přednáška  13 × 2 hod. nepovinná                  
    Cvičení s počítačovou podporou  13 × 2 hod. povinná                  
Osnova:
    Přednáška

1. Počítačová podpora v PLM (základní CAx systémy; virtuální výroba; CAD/CAE/CAM řetězec)


2. Úvod do numerického modelování (základy CAE systému, základní numerické metody v technické praxi)


3. Základy metody konečných prvků (základní princip; základní typy úloh a jejich rovnice v MKP)


4. Popis geometrie v úlohách MKP (základní etapy při popisu geometrického modelu; základní typy tělesových prvků sítě MKP)


5. Kvalita sítě MKP (adaptivní síťování; h-adaptivita; p-adaptivita; r-adaptivita)


6. Popis kontaktu v MKP (základní klasifikace kontaktů, metody řešení kontaktních problémů; definice třecích podmínek)


7. Materiálové modely v MKP I (základní podmínky plasticity a zpevnění; tuho-plastické a elasticko-plastické materiálové modely)


8. Materiálové modely v MKP II (využití tahové zkoušky pro popis mechanických vlastností)


9. Materiálové modely v MKP III (popis anizotropie; využití tlakové zkoušky pro popis mechanických vlastností)


10. Specifika numerických simulací plošného a objemového tváření (specifika v definici sítě a materiálového modelu; sledované veličiny a jejich vyhodnocení)


11. Úvod do numerických simulací svařování (základní cíle numerických analýz svařování, základy simulace svařování v prostředí MKP)


12. Numerická simulace tepelných procesů (základní veličiny pro popis šíření tepla)


13. Ukázky numerického modelování (příklady užití různých softwarů)

    Cvičení s počítačovou podporou

1. Seznámení s vybraným softwarem pro simulaci tváření


2. Řešení zadané problematiky tváření v simulačním softwaru


3. Řešení zadané problematiky tváření v simulačním softwaru


4. Řešení zadané problematiky tváření v simulačním softwaru


5. Řešení zadané problematiky tváření v simulačním softwaru


6. Řešení zadané problematiky tváření v simulačním softwaru


7. Zadání a řešení samostatného projektu


8. Řešení samostatného projektu


9. Řešení samostatného projektu


10. Odevzdání zpracovávaného projektu


11. Seznámení s vybraným softwarem pro simulaci svařování


12. Řešení zadané problematiky svařování v simulačním softwaru


13. Závěrečný písemný test, klasifikovaný zápočet

Literatura - základní:
1. ŘIHÁČEK, Jan. FSI VUT v Brně. Počítačová podpora technologie: část tváření. Brno, 2015, 29 s. Sylabus.
2. ŘIHÁČEK, Jan. FSI VUT v Brně. Simulace tvářecích procesů v softwaru FormFEM: řešené příklady. Brno, 2015, 94 s.
5. VANĚK, Mojmír. FSI VUT v Brně. Počítačová podpora technologie: část svařování. Brno, 2015. Sylabus.
6. VANĚK, Mojmír. FSI VUT v Brně. Počítačová podpora technologie: příklady ze simulací svařování a tepelného zpracování. Brno, 2015.
Literatura - doporučená:
1. VALBERG, Henry S. Applied metal forming including FEM analysis. New York: Cambridge University Press, 2010. ISBN 978-051-1729-430.
2. PETRUŽELKA, Jiří a Jiří HRUBÝ. Výpočetní metody ve tváření. 1. vyd. Ostrava: Vysoká škola báňská - Technická univerzita, Strojní fakulta, 2000. ISBN 80-7078-728-7.
3. GOLDAK, John A. a Mehdi AKHLAGHI. Computational welding mechanics. New York, USA: Springer, 2005, 321 s. ISBN 03-872-3287-7.
4. ESI GROUP. SYSWELD 2015: Reference Manual. 2015, 334 s.
5. RADHAKRISHNAN, P. a S. SUBRAMANYAM. CAD / CAM / CIM. 3rd ed. New Delhi: New Age International (P), 2008. ISBN 978-812-2422-368.
Zařazení předmětu ve studijních programech:
Program Forma Obor Spec. Typ ukončení   Kredity     Povinnost     St.     Roč.     Semestr  
B-STR-P prezenční studium STG Strojírenská technologie -- kl 4 Povinný 1 3 Z
C-AKR-P prezenční studium CZS Předměty zimního semestru -- kl 4 Volitelný 1 1 Z