Algoritmy umělé inteligence (FSI-VAI-A)

Akademický rok 2024/2025
Garant: prof. Ing. Radomil Matoušek, Ph.D.  
Garantující pracoviště: ÚAI všechny předměty garantované tímto pracovištěm
Jazyk výuky: angličtina
Cíle předmětu:

Znalost základních prostředků umělé inteligence a možností jejich použití při řešení inženýrských úloh.
Pochopení základních metod umělé inteligence a schopnost jejich implementace.

Výstupy studia a kompetence:
 
Prerekvizity:
 
Obsah předmětu (anotace):
 
Metody vyučování:
 
Způsob a kritéria hodnocení:

Požadavky pro udělení zápočtu: Vytvoření funkčních softwarových projektů, využívajících některé z probíraných metod UI a vypracování prezentace nějaké neprobírané metody UI. Celkem může student získat 40 bodů za cvičení (30 za projekty a 10 za prezentaci) a 60 bodů za zkoušku, celkem tedy max. 100 bodů. Hodnocení probíhá dle ECTS, tj. pro úspěšné absolvování musí student v každé části získat alespoň polovinu bodů (20 a 30).
Účast na přednáškách je žádoucí, na cvičeních povinná. Výuka probíhá podle týdenních plánů. Způsob nahrazení zameškaných cvičení je plně v kompetenci vyučujícího.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
 
Typ (způsob) výuky:
    Přednáška  13 × 2 hod. nepovinná                  
    Cvičení s počítačovou podporou  13 × 2 hod. povinná                  
Osnova:
    Přednáška

1. Úvod do umělé inteligence.
2. Stavový prostor, neinformované prohledávání.
3. Informované prohledávání stavového prostoru.
4. Řešení problémů rozkladem na podproblémy, metody prohledávání AND/OR grafu.
5. Metody hraní her.
6. Úlohy se splňováním omezení.
7. Predikátová logika a rezoluční metoda.
8. Hornova logika a logické programování.
9. Reprezentace, využívání a učení znalostí.
10. Reprezentace a zpracování neurčitosti.
11. Bayesovské a rozhodovací sítě.
12. Netradiční logiky.
13. Markovské rozhodovací procesy.

    Cvičení s počítačovou podporou

1. Úvodní motivační příklady.
2. Metody neinformovaného prohledávání stavového prostoru.
3. Metody informovaného prohledávání stavového prostoru.
4. Algoritmus A* a jeho modifikace.
5. Metody prohledávání AND/OR grafu.
6. Metody hraní her.
7. Úlohy se splňováním omezení.
8. Predikátová logika a rezoluční metoda.
9. Logické programování a jazyk Prolog.
10. Řešení úloh UI v Prologu.
11. Učení symbolických znalostí.
12. Bayesovské sítě.
13. Pravděpodobnostní a fuzzy logické programování.

Literatura - základní:
1. Russel, S. and Norvig, P. Artificial Intelligence: A Modern Approach, Global Edition. Pearson Education 2021.
2. Negnevitsky, M. Artificial Intelligence. A Guide to Intelligent Systems. Pearson Education 2011.
3. Bratko, I. Prolog Programming for Artificial Intelligence. Pearson Education Canada 2011.
4. Luger, G.F. Artificial Intelligence. Structures and Strategies for Complex Problem Solving. Addison-Wesley 2008.
Literatura - doporučená:
1. Russel, S., Norvig, P.: Artificial Intelligence. A Modern Approach. Prentice Hall 2010. https://people.engr.tamu.edu/guni/csce421/files/AI_Russell_Norvig.pdf
2. Poole, D.L. and Mackworth, A.K. Artificial Intelligence: Foundations of Computational Agents. Cambridge University Press 2023. https://artint.info/3e/html/ArtInt3e.html
Zařazení předmětu ve studijních programech:
Program Forma Obor Spec. Typ ukončení   Kredity     Povinnost     St.     Roč.     Semestr  
N-MAI-A prezenční studium --- bez specializace -- zá,zk 4 Povinně volitelný 2 1 Z