Akademický rok 2024/2025 |
Garant: | doc. Ing. Jiří Šremr, Ph.D. | |||
Garantující pracoviště: | ÚM | |||
Jazyk výuky: | čeština | |||
Typ předmětu: | oborový předmět | |||
Cíle předmětu: | ||||
Cíl kurzu: Cílem předmětu je seznámit studenty se základy kvalitativní teorie obyčejných diferenciálních rovnic, dynamických systémů a analytické mechaniky. Úkolem je také studentům ukázat použití teoretických výsledků v analýze diferenciálních rovnic objevujících se v matematických modelech v mechanice, přičemž vhodně interpretovat získané poznatky, avšak dbát na korektní matematickou argumentaci. Získané znalosti a dovednosti: Po absolvování předmětu studenti zvládnou použít teoretický matematický aparát v analýze diferenciálních rovnic objevujících se ve vybraných matematických modelech v mechanice. Budou schopni sestavit pohybové rovnice jednodušších mechanických soustav a posoudit otázku stability a typu ekvilibrií získaných obecně nelineárních autonomních soustav diferenciálních rovnic. Na vybraných úlohách z mechaniky i jiných disciplín se seznámí s možnostmi matematického modelování pomocí obyčejných diferenciálních rovnic. |
||||
Výstupy studia a kompetence: | ||||
  | ||||
Prerekvizity: | ||||
V oblasti matematiky: Lineární algebra, diferenciální počet funkcí jedné a více proměnných, integrální počet funkcí jedné proměnné, analytické metody řešení lineárních obyčejných diferenciálních rovnic a jejich soustav. V oblasti mechaniky: Vektorové vyjádření sil a momentů. Principy uvolňování těles. Potenciální a kinetická energie. |
||||
Obsah předmětu (anotace): | ||||
Předmět seznámí studenty se základy kvalitativní teorie obyčejných diferenciálních rovnic, zejména s otázkami existence, jednoznačnosti a prodloužitelnosti řešení počátečních úloh pro nelineární neautonomní soustavy diferenciálních rovnic prvního řádu. V rámci tohoto předmětu budou probrány také otázky stability řešení neautonomních soustav a jejich speciálních případů a základy teorie dynamických systémů. Budou také připomenuty základy klasické mechaniky (kinematika a dynamika hmotného bodu, tuhého tělesa a soustav tuhých těles, Lagrangeovy rovnice) potřebné k sestavení pohybových rovnic jednodušších mechanických soustav. Vybudovaný matematický aparát bude použit v analýze obyčejných diferenciálních rovnic objevujících se ve vybraných matematických modelech z mechaniky, přičemž v jejich analýze bude kladen důraz na přesnou matematickou argumentaci. Jedná se zejména o modely kmitání lineárních a nelineárních mechanických soustav s jedním i více stupni volnosti. |
||||
Metody vyučování: | ||||
  | ||||
Způsob a kritéria hodnocení: | ||||
Účast na přednáškách je doporučená, účast na cvičeních je povinná a kontrolovaná. Stanovení způsobů náhrady zmeškané výuky je v kompetenci vyučujícího. Podmínky udělení zápočtu: Aktivní účast ve cvičeních, úspěšné absolvování písemného testu (tj. je potřeba získat alespoň polovinu z maximálního počtu bodů). Zkouška: Bude probíhat ústní formou, prověřuje znalosti definic a vět (zejména schopnost jejich užití na vybraných úlohách). Detailní informace budou oznámeny na konci semestru. |
||||
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky: | ||||
  | ||||
Typ (způsob) výuky: | ||||
Přednáška | 13 × 3 hod. | nepovinná | ||
Cvičení | 13 × 1 hod. | povinná | ||
Osnova: | ||||
Přednáška | Stabilita řešení lineárních soustav ODR, Lyapunovy exponenty, stabilita řešení kvazilineárních soustav. |
|||
Cvičení | Analytická řešení vybraných typů nelineárních ODR 1. řádu. |
|||
Literatura - základní: | ||||
1. ANDRONOV, A. A.; LEONTOVICH, E. A.; GORDON, I. I. a MAIER, A. G. Qualitative Theory of Second-order Dynamic Systems. New York: John Wiley, 1973. ISBN 0470031956. | ||||
2. CODDINGTON, E. A. a LEVINSON, N. Theory of ordinary differential equations. Malabar: Krieger Publishing Company, 1984. ISBN 0-89874-755-4. | ||||
3. LEVI M.Classical Mechanics With Calculus of Variations and Optimal Control: An Intuitive Introduction.Student Mathematical Library 69, American Mathematical Society, 2014.ISBN 978-0-8218-9138-4. | ||||
4. DEMIDOVICH B. P. Lectures on the mathematical theory of stability. Izdat. "Nauka'', Moscow 1967. | ||||
5. HARTMAN, P. Ordinary differential equations. Philadelphia: SIAM, 2002. ISBN 0-89871-510-5. | ||||
6. PERKO, L. Differential equations and dynamical systems. New York: Springer Science+Business Media, 2001. ISBN 0-387-95116-4.ew York, 2001, ISBN 0-387-95116-4. | ||||
Literatura - doporučená: | ||||
1. CODDINGTON, E. A. a LEVINSON, N. Theory of ordinary differential equations. Malabar: Krieger Publishing Company, 1984. ISBN 0-89874-755-4. | ||||
2. HARTMAN, P. Ordinary differential equations. Philadelphia: SIAM, 2002. ISBN 0-89871-510-5. | ||||
3. KALAS J. a RÁB M. Obyčejné diferenciální rovnice. Masarykova univerzita, Brno, 1995. ISBN 80-210-1130-0. | ||||
4. PERKO, L. Differential equations and dynamical systems. New York: Springer Science+Business Media, 2001. ISBN 0-387-95116-4.ew York, 2001, ISBN 0-387-95116-4. |
Zařazení předmětu ve studijních programech: | |||||||||
Program | Forma | Obor | Spec. | Typ ukončení | Kredity | Povinnost | St. | Roč. | Semestr |
N-MAI-P | prezenční studium | --- bez specializace | -- | zá,zk | 6 | Povinný | 2 | 2 | Z |
C-AKR-P | prezenční studium | CZS Předměty zimního semestru | -- | zá,zk | 6 | Volitelný | 1 | 1 | Z |
Vysoké učení technické v Brně
Fakulta strojního inženýrství
Technická 2896/2,
616 69 Brno
IČ 00216305
DIČ CZ00216305
+420 541 141 111
+420 726 811 111 – GSM O2
+420 604 071 111 – GSM T-mobile