Robotics Workcells Designing and Programming (FSI-GNP-K)

Academic year 2018/2019
Supervisor: doc. Ing. Radek Knoflíček, Dr.  
Supervising institute: ÚVSSR all courses guaranted by this institute
Teaching language: Czech
Aims of the course unit:
The aim of the course is to make students familiar with a methodology of designing robotic cells for typical applications and technologies used in the industry. Another aim concerns with methods of programming of industrial robots, including the use of advanced simulation tools for off-line programming. The subject is also the use of external PLC systems and sensors within the robotic cells - their integration and use in the context of solved problems.
Learning outcomes and competences:
Students will gain a comprehensive overview of the possibilities and requirements for the design of robotic cells. Based on the experience gained will be able to work independently in designing workplaces for typical applications in industry (handling, palletizing, welding, machining, etc.). Students also gain a comprehensive and practically oriented overview of programming of industrial robots. Based on the experience gained will be able to work independently in the field of programming robots for typical applications in industry (particularly in handling, palletizing, or CAD / CAM robotic machining).
Prerequisites:
Successful completion of the subject Industrial Robots and Manipulators I (GPZ) and a basic knowledge of programming (language C, C ++, C #).
Course contents:
The course makes students familiar with the basics of designing robotic cells for various applications of technology. Major emphasis is placed on the overall workplace layout of main elements (2D / 3D layout), selection of appropriate sensors for a given application and taking into account the workplace safety with respect to current legal requirements and international standards. Furthermore, students learn about currently available options for programming of industrial robots, where the main emphasis is put on KUKA robots (KRL language, KUKA). The acquired knowledge will nevertheless be generally useful regardless of a robot manufacturer.
Teaching methods and criteria:
The course is based on laboratory seminars focusing on a practical use of acquired knowledge. Acquired knowledge will be tested within the seminars in connection with KUKA industrial robots. According to actual possibilities, the students will also be confronted with selected lectures presented by industrial experts. Special field trips to selected companies – focused on the course content – are also expected to organize.
Assesment methods and criteria linked to learning outcomes:
The condition for the credit is at least 80% participation in seminars and a worked out project focusing on a given topic. Specifications for processing individual projects will be announced at the beginning of the semester.
Controlled participation in lessons:
Seminars are obligatory. Justified absence can be compensated by consultations. When obtaining credit, the student's knowledge will be verified based on the ability of their practical application.
Type of course unit:
    Laboratory exercise  1 × 17 hrs. compulsory                  
    Controlled Self-study  1 × 35 hrs. compulsory                  
Course curriculum:
    Laboratory exercise 1. Introduction to designing of robotic cells and advanced KUKA robot programming. Analysis of most common types of robotic cells including the safety issue.
2. Design methodology for the whole conception of robotic cells, placement of main components (expert level).
3. Advanced programming in KUKA KRL, sensors – possibilities of integration, possibilities of cell control.
4. Case study no. 1: manipulation task with KUA robot (conveyor belt, external control system).
5. Case study no. 2: using simulation tools (CAD/CAM programming, robotic deburring, milling).
6. Case study no. 3: Technological operations with industrial robots. Requirements, possibilities and approaches to solution.
7. Assignment of individual projects with KUKA robots: solution possibilities.
8. Projects solving: consultation and verification.
9. Projects solving: consultation and verification.
10. Projects solving: consultation and verification.
11. Projects solving: consultation and verification.
12. Verification and evaluation of student’s solutions.
13. Total classification.
    Controlled Self-study 1. Introduction to designing of robotic cells and advanced KUKA robot programming. Analysis of most common types of robotic cells including the safety issue.
2. Design methodology for the whole conception of robotic cells, placement of main components (expert level).
3. Advanced programming in KUKA KRL, sensors – possibilities of integration, possibilities of cell control.
4. Case study no. 1: manipulation task with KUA robot (conveyor belt, external control system).
5. Case study no. 2: using simulation tools (CAD/CAM programming, robotic deburring, milling).
6. Case study no. 3: Technological operations with industrial robots. Requirements, possibilities and approaches to solution.
7. Assignment of individual projects with KUKA robots: solution possibilities.
8. Projects solving: consultation and verification.
9. Projects solving: consultation and verification.
10. Projects solving: consultation and verification.
11. Projects solving: consultation and verification.
12. Verification and evaluation of student’s solutions.
13. Total classification.
Literature - fundamental:
1. SICILIANO, B. KHATIB, O. Springer Handbook of Robotics. Springer-Verlag New York, Inc., 2008. 1611 s. ISBN 978-3-540-23957-4
2. PIRES, J. N. Industrial Robots Programming: Building Applications for the Factories of the Future. Springer, 2008. 282 s. ISBN 978-0-387-23325-3
3. NOF, S. Y. Springer Handbook of Automation. Springer, 2009. 1812 s. ISBN 978-3-540-78830-0
4. MONKMAN, G. J., HESSE, S., STEINMANN, R. SCHUNK, H. Robot Grippers. Wiley-VCH Verlag, 2007. 463 s. ISBN 978-3527406197
5. WOLF, A., STEINMANN, R. SCHUNK, H. Grippers in Motion: The Fascination of Automated Handling Tasks. Springer, 2005. 242 s. ISBN 978-3-540-27718-7
6. Manuály k průmyslovým robotům KUKA: KUKA - Operating and Programming Instructions, v. 1.1, 2006; KUKA - KR C2/KR C3 Expert Programming, v. 01, 2006; KUKA - KR C4 Programming, 2013; KUKA - WorkVisual (různé verze), konfigurace vstupů/výstupů, 2013; KUKA - Industrial Robots, Safety: for mechanical components, 2012.
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
M2I-K combined study M-VSR Production Machines, Systems and Robots -- GCr 4 Compulsory-optional 2 1 S
M2I-K combined study M-VSR Production Machines, Systems and Robots P linked to branch B-SSZ GCr 4 Compulsory-optional 2 1 S