Vybrané kapitoly z matematiky I (FSI-T1K)

Akademický rok 2022/2023
Garant: prof. RNDr. Miloslav Druckmüller, CSc.  
Garantující pracoviště: ÚM všechny předměty garantované tímto pracovištěm
Jazyk výuky: čeština
Cíle předmětu:
Kurs rozšiřuje základní kurs matematické analýzy o vybrané oblasti nutné ve fyzikálních aplikacích.
Výstupy studia a kompetence:
Základy funkcionální analýzy, metrické, vektorové a unitární prostory, Hilbertův
prostor, ortogonální systémy funkcí, Fourierovy řady, ortogonální
transformace, Fourierova transformace, fyzikální aplikace uvedených
oblastí
Prerekvizity:
Analýza v reálném a komplexním oboru
Obsah předmětu (anotace):
Kurs obsahuje vybrané kapitoly z funkcionální analýzy nutné pro fyzikální aplikace. Zabývá se prostory funkcí, ortogonálními systémy funkcí a ortogonálními transformacemi a jejich aplikacemi ve fyzice.
Metody vyučování:
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení:
Zápočet na základě testu
Zkouška písemná event. i ústní
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Nahrazení zameškané výuky je možné absolvováním testu.
Typ (způsob) výuky:
    Přednáška  13 × 2 hod. nepovinná                  
    Cvičení  13 × 1 hod. povinná                  
Osnova:
    Přednáška 1. Úvod
2. Metrický prostor, úplný metrický prostor
3. Kontrakce, Banachova věta a její aplikace
4. Vektorový prostor, báze, dimenze, prostory funkcí
5. Unitární prostor, ortogonální a ortonormální báze
6. Hilbertův prostor, prostor L2
7. Ortogonální báze fukcí, Fourierovy řady
8. Ortogonální transformace, Fourierova transformace
9. Užití Fourierovy transformace, věta o konvoluci
10.Dvourozměrná Fourierova transformace
11.Filtrace v prostorové a frekvenční oblasti, fyzikální aplikace
12.Operátory a funkcionály
13.Variační metody
    Cvičení 1. Opakování vybraných partií
2. Metrický prostor, úplný metrický prostor
3. Kontrakce, Banachova věta a její aplikace _
4. Vektorový prostor, báze, dimenze, prostory funkcí
5. Unitární prostor, ortogonální a ortonormální báze
6. Hilbertův prostol, prostory L2, l2
7. Ortogonální báze fukcí, Fourierovy řady
8. Ortogonální transformace, Fourierova transformace
9. Uľití Fourierovy transformace, věta o konvoluci
10.Dvourozměrná Fourierova transformace
11.Filtrace v prostorové a frekvenční oblasti, fyzikální aplikace
12.Variační metody
13.Variační metody 1
Literatura - základní:
1. Kolmogorov,A.N.,Fomin,S.V.: Základy teorie funkcí a funkcionální analýzy, SNTL Praha 1975
2. Lang, S. Real and Functional Analysis. Third Edition, Springer-Verlag 1993
Literatura - doporučená:
1. Kolmogorov,A.N.,Fomin,S.V.: Základy teorie funkcí a funkcionální analýzy, SNTL Praha 1975
Zařazení předmětu ve studijních programech:
Program Forma Obor Spec. Typ ukončení   Kredity     Povinnost     St.     Roč.     Semestr  
CŽV prezenční studium CZV Základy strojního inženýrství -- zá,zk 3 Povinný 1 1 L
B-FIN-P prezenční studium --- bez specializace -- zá,zk 3 Povinný 1 2 L