Pravděpodobnost a statistika III (FSI-SP3)

Akademický rok 2023/2024
Garant: doc. Mgr. Zuzana Hübnerová, Ph.D.  
Garantující pracoviště: ÚM všechny předměty garantované tímto pracovištěm
Jazyk výuky: čeština
Cíle předmětu:
Seznámení studentů oboru Matematické inženýrství s metodami teorie odhadu, asymptotickým přístupem k testování statistických hypotéz a s využitím těchto metod ke statistické analýze reálných dat.

Výstupy studia a kompetence:

Studenti získají potřebné znalosti z významných partií matematické statistiky, které jim umožní posuzovat a vytvářet stochastické modely technických jevů a procesů založené na těchto metodách a realizovat je na PC.

Prerekvizity:
Základy teorie pravděpodobnosti a matematické statistiky, lineární modely.
Obsah předmětu (anotace):

Obsahem předmětu jsou partie: teorie odhadu, maximální věrohodnost, momentové odhady, bayesovské metody, testování statistických hypotéz, neparametrické metody, hustoty exponenciálního typu, asymptotické testy, zobecněné lineární modely.

Metody vyučování:
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení:
Podmínky udělení klasifikovaného zápočtu: aktivní účast ve cvičeních, zvládnutí celé látky, klasifikace dostatečně anebo lepší všech kontrolních prací. Zpracování a obhájení projektu. Napsání klasifikační písemky (4- 5 příkladů z probraných témat).
Hodnocení podle bodů získaných z projektu (max:20 bodů) a z klasifikační písemky (max. 80 bodů) - výborně (90 až 100 bodů), velmi dobře (80 až 89), dobře (70 až 79 bodů), uspokojivě (60 až 69 bodů), dostatečně (50 až 59 bodů), nevyhovující (0 až 49 bodů).

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Účast na cvičení je povinná a o náhradě zameškané výuky rozhoduje učitel cvičení.
Typ (způsob) výuky:
    Přednáška  13 × 2 hod. nepovinná                  
    Cvičení s počítačovou podporou  13 × 1 hod. povinná                  
Osnova:
    Přednáška

Nestranné a konzistentní odhady
Regulární system hustot, Raova – Cramérova věta, vydatné odhady
Fisherova míra informace a Fisherova informační matice
Postačující statistiky, Neumanovo faktorizační kritérium
Raova-Blackwellova věta a její použití
Metoda momentů, metoda maximální věrohodnosti
Bayesovský přístup
Testování statistických hypotéz
Základy neparametrických metod
Exponenciální třída rozdělení
Asymptotické testy založené na věrohodnostní funkci
Testy s rušivými parametry, příklady
Testy hypotéz o parametrech
Zobecněné lineární modely

    Cvičení s počítačovou podporou

Nestranné a konzistentní odhady - příklady odhadů, ověřování jejich vlastností
Výpočet dolní hranice pro rozptyl nestranných odhadů
Výpočet Fisherovy míry informace a Fisherovy informační matice pro zadaná rozdělení
Užití Neumanova faktorizačního kritéria
Hledání odhadů pomocí Raova-Blackwellovy věty
Konstrukce odhadů metodou momentů a pomocí metody maximální věrohodnosti
Konstrukce bayesovských odhadů
Síly testů a odvození stejnoměrně nejsilnějších testů
Užití neparametrických metod při analýze dat
Ověřování exponenciální třídy pro vybraná rozdělení
Použití asymptotických testů založených na věrohodnostní funkci
Testy s rušivými parametry, odhady parametrů Weibullova rozdělení a gama rozdělení
Testování hypotéz o parametrech zobecněného lineárního modelu

Literatura - základní:
1. Anděl, J. Základy matematické statistiky. Matfyzpress. Praha 2005
2. Hogg, V.R., McKean J.W. and Craig A.T. Introduction to Mathematical Statistics. Seventh Edition, 2013. New York : Pearson. ISBN: 978-0-321-79543-4
4. Lehmann, E.L., Casella G.: Theory of Point Estimation. New York: Springer. 1998
5. Dobson, A. J. An introduction to generalized linear models. Chapman & Hall/CRC Boca Raton. 2002.
Literatura - doporučená:
2. Militký, J.: Statistické techniky v řízení jakosti. Pardubice : TriloByte, 1996.
5. Montgomery, D.D, Runger, G.: Applied Statistics and Probability for Engineers, New York : John Wiley & Sons. 2002
Zařazení předmětu ve studijních programech:
Program Forma Obor Spec. Typ ukončení   Kredity     Povinnost     St.     Roč.     Semestr  
N-MAI-P prezenční studium --- bez specializace -- kl 4 Povinný 2 1 Z