Stochastické procesy (FSI-SSP)

Akademický rok 2023/2024
Garant: doc. Mgr. Zuzana Hübnerová, Ph.D.  
Garantující pracoviště: ÚM všechny předměty garantované tímto pracovištěm
Jazyk výuky: čeština
Cíle předmětu:
Cílem předmětu je seznámit studenty se základy teorie stochastických procesů a s používanými modely pro analýzu časových řad i algoritmy odhadu jejich parametrů. Ve cvičení se studenti učí na simulovaných nebo reálných datech prakticky aplikovat teoretické postupy formou projektu pomocí vhodného softwaru. Výsledkem je projekt vyhodnocení a predikce reálných časových řad.
Výstupy studia a kompetence:

Předmět umožňuje studentům získat základní znalosti o modelování stochastických procesů (Markovovy řetězce, dekompoziční model, ARMA) a způsobech výpočtu odhadu jejich nejrůznějších charakteristik s cílem popsat mechanismus chování procesu na základě pozorování jeho časové řady. Student tak zvládne základní metody pro vyhodnocování reálných dat.

Prerekvizity:
Základy diferenciálního a integrálního počtu, teorie pravděpodobnosti a matematické statistiky.
Obsah předmětu (anotace):

Předmět obsahuje úvod do teorie náhodných procesů: typy a základní vlastnosti, Markovovy řetězce, stacionarita, autokovarianční funkce, spektrální hustota, příklady typických procesů, parametrické a neparametrické metody dekompozice časových řad, identifikace period, ARMA procesy. Studenti se seznámí s užitím těchto metod pro popis a predikci časových řad na PC pomocí vhodných softwarů.

Metody vyučování:
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení:

Podmínky udělení zápočtu: aktivní účast ve cvičení, prokázání základních dovedností pro praktickou analýzu dat na PC formou projektu, úspěšné řešení případných průběžných písemných testů.

Zkouška probíhá ústně, jsou voleny otázky ze 3 předem stanovených okruhů (30+30+40 bodů). V každém okruhu je pro úspěšné složení zkoušky požadována dostatečná znalost základních pojmů a jejich vlastností. Hodnocení podle bodů: výborně (90 až 100 bodů), velmi dobře (80 až 89), dobře (70 až 79 bodů), uspokojivě (60 až 69 bodů), dostatečně (50 až 59 bodů), nevyhovující (0 až 49 bodů).

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Účast na cvičení je povinná a o náhradě zameškané výuky rozhoduje učitel cvičení.
Typ (způsob) výuky:
    Přednáška  13 × 2 hod. nepovinná                  
    Cvičení s počítačovou podporou  13 × 1 hod. povinná                  
Osnova:
    Přednáška

Stochastický proces, typy.
Markovovy řetězce.
Striktní a slabá stacionarita.
Autokorelační funkce (vlastnosti). Výběrová autokorelační funkce.
Dekompoziční model (aditivní, multiplikativní), stabilizace rozptylu. Odhad trendu bez sezónnosti (lineární filtry, polynomiální regrese).
Odhad trendu se sezónností. Testy náhodnosti.
Lineární procesy.
ARMA(1,1) procesy. Asymptotické vlastnosti odhadů střední hodnoty a autokorelační funkce.
Nejlepší lineární predikce v ARMA(1,1). Durbin-Levinsonův a inovační algoritmus.
ARMA(p,q) procesy, kauzalita, invertibilita, parciální autokorelační funkce.
Spektrální hustota (vlastnosti).
Identifikace periodických komponent: periodogram, testy periodicity.
Nejlepší lineární predikce, Yuleův-Walkerův systém rovnic, chyba predikce.
ARIMA modely a nestacionární stochastické procesy.

    Cvičení s počítačovou podporou

Markovovy řetězce.
Načítání, ukládání a vizualizace dat, simulace stochastických procesů.
Momentové charakteristiky stochastických procesů
Detekce heteroskedasticity. Transformace stabilizující rozptyl (mocninná, Box-Coxova).
Užití lineárního regresního modelu při dekompozici časové řady.
Separace sezónní složky.
Odstranění šumu pomocí lineární filtrace (metoda klouzavých vážených průměrů), Spencerovy 15-ti bodové váhy.
Filtrování pomocí po částech polynomiální regrese, exponenciálního vyrovnávání.
Testy náhodnosti.
Simulace, identifikace a odhad parametrů modelu ARMA.
Predikce procesu.
Testování významnosti (parciálních) korelací.
Identifikace periodických složek, periodogram, testování.
Konzultace k projektům studentů.

Literatura - základní:
1. Brockwell, P.J. - Davis, R.A. Introduction to time series and forecasting. 3rd ed. New York: Springer, 2016. 425 s. ISBN 978-3-319-29852-8.
3. Brockwell, P.J. - Davis, R.A. Time series: Theory and Methods. 2-nd edition 1991. New York: Springer. ISBN 978-1-4419-0319-8.
Literatura - doporučená:
1. Ljung, L. System Identification-Theory For the User. 2nd ed. PTR Prentice Hall : Upper Saddle River, 1999.
2. Hamilton, J.D. Time series analysis. Princeton University Press, 1994. xiv, 799 s. ISBN 0-691-04289-6.
Zařazení předmětu ve studijních programech:
Program Forma Obor Spec. Typ ukončení   Kredity     Povinnost     St.     Roč.     Semestr  
N-MAI-P prezenční studium --- bez specializace -- zá,zk 5 Povinný 2 1 L