Matematika pro aplikace (FSI-9MPA)

Akademický rok 2023/2024
Garant: doc. Mgr. Jaroslav Hrdina, Ph.D.  
Garantující pracoviště: ÚM všechny předměty garantované tímto pracovištěm
Jazyk výuky: čeština či angličtina
Cíle předmětu:
Cílem předmětu je shrnutí, rozšíření a prohloubení znalostí matematiky z bakalářského a magisterského studia se zaměřením na aplikace, zejména ve fyzikálním inženýrství.
Výstupy studia a kompetence:

Studenti se seznámí se širokým okruhem matematických pojmů, které vystupují ve fyzikálních aplikacích, a které obvykle nebývají součástí základních kurzů.

Prerekvizity:
Lineární algebra, diferenciální a integraální počet.
Obsah předmětu (anotace):
Výklad bude směřovat napříč tradiční klasifikací matematických disciplín tak, aby respektoval potřeby a přání posluchačů. Bude veden interaktivní formou tak, aby přednášející mohl reagovat na podněty studentů. Globální pohled na problematiku umožní studentům vidět souvislosti mezi zdánlivě odlehlými odvětvími matematiky.
Metody vyučování:
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny.
Způsob a kritéria hodnocení:
Předmět je ukončen zkouškou, která je ústní. Prověřuje se u ní znalost definic, vět a algoritmů a schopnost jejich užití na konkrétních aplikacích.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Účast na přednáškách je doporučená. Výuka probíhá podle týdenních rozvrhů. Je možné studovat individuálně podle doporučené literatury s využitím konzultací.
Typ (způsob) výuky:
    Přednáška  10 × 2 hod. nepovinná                  
Osnova:
    Přednáška

Program semestru může být modifikován vzhledem k odbornému zaměření studentů


Pokročilá lineární algebra


1. Duální vektorové prostory, tenzory.
2. Miknowského geometrie, kužel událostí
3. Komplexní vektorové prostory, kvantová mechanika
4. Kvaterniony a algebra rotací
5. Spinová grupa


Teorie řízení / optimalizace


1. Neholonomní mechanika geometricky
2. Hamiltonovská vektorová pole
3. Pontryaginův maximalizační princip
4. Teorie her dvou hráčů a simplexová metoda
5. Kooperativní hry

Literatura - základní:
1. G. B. Arfken, V. J. Walker: Mathematical Methods for Physicists (4th ed.). Academic Press, 1995.
2. G. B. Thomas, R. L. Finney: Calculus and Analytic Geometry, Addison Wesley 2003
3. A. A. Howard: Elementary Linear Algebra, Wiley 2002
Literatura - doporučená:
1. J. Nedoma: Matematika I., Cerm 2001
2. J. Karásek: Matematika II., Cerm 2002
3. J. Karásek, L. Skula: Lineární algebra. Teoretická část, Cerm 2005
4. J. Karásek, L. Skula: Lineární algebra. Cvičení, Cerm 2005
5. J. Karásek, L. Skula: Obecná algebra, Cerm 2008
6. M. Druckmüller, A. Ženíšek: Funkce komplexní proměnné, PC-Dir 2000
Zařazení předmětu ve studijních programech:
Program Forma Obor Spec. Typ ukončení   Kredity     Povinnost     St.     Roč.     Semestr  
D-FIN-P prezenční studium --- bez specializace -- drzk 0 Doporučený kurs 3 1 L
D-FIN-K kombinované studium --- bez specializace -- drzk 0 Doporučený kurs 3 1 L