Rovnice matematické fyziky I (FSI-9RF1)

Akademický rok 2023/2024
Garant: prof. RNDr. Jan Franců, CSc.  
Garantující pracoviště: ÚM všechny předměty garantované tímto pracovištěm
Jazyk výuky: čeština či angličtina
Cíle předmětu:
Cílem kurzu je seznámit posluchače s parciálními diferenciálními rovnicemi,
zejména rovnicemi matematické fyziky, jejich základními vlastnostmi a jejich
použitím v matematickém modelování, naučit formulovat počáteční a okrajové
úlohy modelující vybrané konkrétní fyzikální situace. Seznámit s klasickými
metodami řešení a naučit řešit jednoduché úlohy matematické fyziky.
Výstupy studia a kompetence:
Základy teorie parciálních diferenciálních rovnic a přehled o možnostech jejich využití při matematickém modelování. Dovednost sestavit matematický model konkrétních vybraných fyzikálních situací a v jednoduchých případech spočítat řešení.
Prerekvizity:
Řešení algebraických rovnic a soustav lineárních rovnic, diferenciální a integrální počet funkce jedné a více proměnných, obyčejné diferenciální rovnice.
Obsah předmětu (anotace):
Parciální diferenciální rovnice - základní pojmy. Rovnice prvního řádu.
Klasifikace a kanonický tvar rovnic druhého řádu. Odvození vybraných rovnic matematické fyziky, formulace počátečních a okrajových úloh.
Klasické metody: metoda charakteristik, Fourierova metoda řad, metoda integrální transformace, metoda Greenovy funkce. Principy maxima.
Vlastnosti řešení eliptických, parabolických a hyperbolických rovnic.
Metody vyučování:
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny.
Způsob a kritéria hodnocení:
Zkouška se skládá z praktické a teoretické části.
Praktická část: řešení zadaných příkladů
1. rovnice prvního řádu,
2. rovnice druhého řádu, klasifikace a převedení na kanonický tvar
3. formulace počáteční okrajové úlohy pro rovnici vedení tepla v tyči
nebo kmitání struny a její řešení Fourierovou metodou řad.
Teoretická část: 3 otázky z probrané teorie.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
V případě absence student si musí doplnit zameškanou látku samostudiem ze skript.
Typ (způsob) výuky:
    Přednáška  10 × 2 hod. nepovinná                  
Osnova:
    Přednáška 1. Úvod, rovnice prvního řádu.
2. Rovnice druhého řádu, klasifikace a kanonický tvar.
3.-4. Odvození vybraných rovnic matematické fyziky a formulace počátečních a okrajových úloh.
5. Metoda charakteristik.
6. Fourierova metoda řad.
7. Metoda integrální transformace.
8. Metoda Greenových funkcí.
9. Principy maxima a harmonické funkce.
10. Souhrn, srovnání vlastností řešení hyperbolických, parabolických a eliptických rovnic.


Literatura - základní:
1. Arsenin, V. J.: Metody matematičeskoj fyziky i specialnyje funkcii, Nauka, Moskva 1974, překlad do slovenštiny: Matematická fyzika. Základné rovnice a špeciálne funkcie. Alfa, Bratislava, 1977.
2. Evans, L. C.: Partial differential equations, American Math. Society Providence 1998.
3. Sobolev, S. L.: Partial differential equations of mathematical physics Pergamon Press, Oxford 1964
4. T. A. Bick: Elementary boundary value problems. Marcel Dekker, New York 1993
5. Williams, W. E.: Partial Differential Equations, Clarendon Press, Oxford 1980.
Literatura - doporučená:
1. J. Franců: Parciální diferenciální rovnice. Akad. nakl. CERM, Brno 2011
2. V. J. Arsenin: Matematická fyzika, Alfa, Bratislava 1977
3. Drábek, P., Holubová, G.: Elements of Partial Differential Equations, De Gruyter, Berlin, 2014
4. Renardy, M., Rogers, R., C.: An introduction to partial differential equations, Springer, New York 2004.
Zařazení předmětu ve studijních programech:
Program Forma Obor Spec. Typ ukončení   Kredity     Povinnost     St.     Roč.     Semestr  
D-FIN-P prezenční studium --- bez specializace -- drzk 0 Doporučený kurs 3 1 L
D-FIN-K kombinované studium --- bez specializace -- drzk 0 Doporučený kurs 3 1 L