Pravděpodobnost a statistika III (FSI-SP3-A)

Akademický rok 2022/2023
Garant: doc. Mgr. Zuzana Hübnerová, Ph.D.  
Garantující pracoviště: ÚM všechny předměty garantované tímto pracovištěm
Jazyk výuky: angličtina
Cíle předmětu:
Seznámení studentů oboru Matematické inženýrství s metodami teorie odhadu, asymptotickým přístupem k testování statistických hypotéz a s využitím těchto metod ke statistické analýze reálných dat.

Výstupy studia a kompetence:
Studenti získají potřebné znalosti z významných partií matematické statistiky, které jim umožní posuzovat a vytvářet stochastické modely technických jevů a procesů založené na těchto metodách a realizovat je na PC.
Prerekvizity:
Základy teorie pravděpodobnosti a matematické statistiky, lineární modely.
Obsah předmětu (anotace):
Obsahem předmětu jsou partie: teorie odhadu, maximální věrohodnost, momentové odhady, bayesovské metody, testování statistických hypotéz, neparametrické metody, hustoty exponenciálního typu, asymptotické testy.
Metody vyučování:
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení:
Podmínky udělení klasifikovaného zápočtu: aktivní účast ve cvičeních, zvládnutí celé látky, klasifikace dostatečně anebo lepší všech kontrolních prací. Zpracování a obhájení projektu. Napsání klasifikační písemky (4- 5 příkladů z probraných témat).
Hodnocení podle bodů získaných z projektu (max:20 bodů) a z klasifikační písemky (max. 80 bodů) - výborně (90 až 100 bodů), velmi dobře (80 až 89), dobře (70 až 79 bodů), uspokojivě (60 až 69 bodů), dostatečně (50 až 59 bodů), nevyhovující (0 až 49 bodů).

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Účast na cvičení je povinná a o náhradě zameškané výuky rozhoduje učitel cvičení.
Typ (způsob) výuky:
    Přednáška  13 × 2 hod. nepovinná                  
    Cvičení s počítačovou podporou  13 × 1 hod. povinná                  
Osnova:
    Přednáška Nestranné a konzistentní odhady
Regulární system hustot, Raova – Cramérova věta, vydatné odhady
Fisherova míra informace a Fisherova informační matice
Postačující statistiky, Neumanovo faktorizační kritérium
Raova-Blackwellova věta a její použití
Metoda momentů, metoda maximální věrohodnosti
Bayesovský přístup
Testování statistických hypotéz
Základy neparametrických metod
Exponenciální třída rozdělení
Asymptotické testy založené na věrohodnostní funkci
Testy s rušivými parametry, příklady
Testy hypotéz o parametrech
    Cvičení s počítačovou podporou Přehled rozdělení pravděpodobností, grafické znázornění hustot
Nestranné a konzistentní odhady - příklady odhadů, ověřování jejich vlastností
Výpočet dolní hranice pro rozptyl nestranných odhadů
Výpočet Fisherovy míry informace a Fisherovy informační matice pro zadaná rozdělení
Užití Neumanova faktorizačního kritéria
Hledání odhadů pomocí Raova-Blackwellovy věty
Konstrukce odhadů metodou momentů a pomocí metody maximální věrohodnosti
Konstrukce bayesovských odhadů
Zadání projektu - konstrukce odhadů parametrů pro zadané rozdělení - použití alespoň dvou postupů, ověření vlastností odhadu a jejich numerický výpočet
Ověřování exponenciální třídy pro vybraná rozdělení
Použití asymptotických testů založených na věrohodnostní funkci
Testy s rušivými parametry, odhady parametrů Weibullova rozdělení a gama rozdělení
Testování hypotéz o parametrech zobecněného lineárního modelu
Literatura - základní:
1. Hogg, V.R., McKean J.W., and Craig A.T. Introduction to Mathematical Statistics. Seventh Edition, 2013. New York: Pearson. ISBN: 978-0-321-79543-4.
2. Lehmann, E.L., Casella G.: Theory of Point Estimation. New York: Springer. 1998.
4. Dobson, A. J. An introduction to generalized linear models. Chapman & Hall/CRC Boca Raton. 2002
Literatura - doporučená:
5. Montgomery, D.C, Runger, G.: Applied Statistics and Probability for Engineers. New York: John Wiley & Sons. 2002.
Zařazení předmětu ve studijních programech:
Program Forma Obor Spec. Typ ukončení   Kredity     Povinnost     St.     Roč.     Semestr  
CŽV prezenční studium CZV Základy strojního inženýrství -- kl 3 Povinný 1 1 Z
N-MAI-A prezenční studium --- bez specializace -- kl 3 Povinný 2 1 Z