Akademický rok 2022/2023 |
Garant: | RNDr. Pavel Popela, Ph.D. | |||
Garantující pracoviště: | ÚM | |||
Jazyk výuky: | angličtina | |||
Cíle předmětu: | ||||
Seznámení studentů se základními pojmy, metodami a postupy operačního výzkumu Formování stochastického způsobu myšlení studentů pro modelování reálných jevů a procesů ve strojírenských oborech. Důraz je kladen na získání hlubokých znalostí modelů a metod řešení stochastických a optimalizačních problémů, počínaje analýzou problému, přes tvorbu matematického modelu, včetně zápisu modelu, nalezení ekvivalentních modelů, volbu a modifikaci algoritmů. Uvedené metody jsou podloženy výkladem teoretických poznatků, navazujícím na geometrický názor nebo zkušenosti s reálnými daty. |
||||
Výstupy studia a kompetence: | ||||
Studenti získají potřebné znalosti z teorie pravděpodobnosti, popisné statistiky a matematické statistiky, které jim umožní pochopit a aplikovat stochastické modely technických jevů a procesů, založené na těchto metodách. Studenti dále získají znalosti základů optimalizace (zejména lineárního a nelineárního programování) osvojí si algoritmy řešení optimalizačních úloh a utvoří si základní představu o uplatnění optimalizačních modelů v typických aplikacích. |
||||
Prerekvizity: | ||||
Předpokládají se znalosti základních poznatků matematické analýzy a lineární algebry. | ||||
Obsah předmětu (anotace): | ||||
Předmět je zaměřen na seznámení studentů se základy operačního výzkumu pro inženýrské problémy. V první části uvádí základy teorie pravděpodobnosti a klíčové principy matematické statistiky (metody popisné statistiky, odhady parametrů, testování statistických hypotéz, lineární regresní analýza). Úlohy na procvičení látky jsou orientovány na praktické aplikace ve strojírenských oborech. Druhá část se zaměřuje na základní optimalizační modely a metody pro řešení technických problémů. Výklad se opírá o zásady matematického programování: porozumění problému, sestavení modelu, nalezení, analýza a interpretace optimálního řešení. Předmět zahrnuje úvod do lineárního a nelineární programování. Kurs byl sestaven na základě zkušeností autora s obdobnými kursy na zahraničních školách. | ||||
Metody vyučování: | ||||
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách. |
||||
Způsob a kritéria hodnocení: | ||||
Podmínky udělení zápočtu: aktivní účast ve cvičeních, zvládnutí celé látky, Zkouška je písemná, zahrnuje formulační, výpočtové a teoretické otázky.K písemné práci probíhá ústní rozprava. |
||||
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky: | ||||
Účast je kontrolována pomocí aktivní účasti studentů na řešených problémech, zameškaná výuka je nahrazována samostatným řešením zadaných úloh. |
||||
Typ (způsob) výuky: | ||||
Přednáška | 13 × 2 hod. | nepovinná | ||
Cvičení | 13 × 2 hod. | povinná | ||
Osnova: | ||||
Přednáška | 1. Náhodné jevy a jejich pravděpodobnost. 2. Náhodná veličina a vektor, druhy, funkční a číselné charakteristiky. 3. Základní diskrétní a spojitá rozdělení pravděpodobnosti. 4. Náhodný výběr, výběrové charakteristiky. Odhady parametrů (bodové a intervalové odhady). 5. Testování statistických hypotéz. 6. Základy regresní analýzy. 7. Úvodní modely (ÚM): formulace problému, analýza problému, návrh modelu, teoretické vlastnosti. 8. ÚM: vizualizace, algoritmy, software, postoptimalizace. 9. Lineární programování (LP): Konvexní a polyedrické množiny. Množina přípustných řešení a teoretické poznatky. 10. LP: Simplexová metoda. 11. Nelineární programování (NLP): Konvexní funkce a jejich vlastnosti. Volné extrémy a vybrané numerické metody. 12. NLP: Vázané extrémy a KKT podmínky. 13. NLP: Vázané extrémy a související numerické metody vícerozměrné optimalizace. |
|||
Cvičení | 1. Popisná statistika - příklady. 2. Pravděpodobnost - slovní úlohy. 3. Funkční a číselné charakteristiky náhodné veličiny. 4. Základní rozdělení pravděpodobnosti - příklady. 5. Bodové a intervalové odhady parametrů - příklady. 6. Testy hypotéz o parametrech - příklady. 7. Lineární regrese (přímka), odhady, testy a graf. 8. Uvodni ulohy - formulace problému a modelu 9. Linearni ulohy - krajní body, krajní směry. 10. Lineární úlohy - simplexová metoda 11. Nelinearni ulohy - příklady použití algoritmů (volné extrémy). 12. Nelineární úlohy - KKT 13. Nelineární úlohy - příklady použití algoritmů (vázané extrémy). |
|||
Literatura - základní: | ||||
1. Montgomery, D. C. - Renger, G.: Applied Statistics and Probability for Engineers. New York : John Wiley & Sons, 2003. | ||||
2. Hahn, G. J. - Shapiro, S. S.: Statistical Models in Engineering.New York : John Wiley & Sons, 1994. | ||||
3. Bazaraa M. et al.: Linear Programming and Network Flows,. John Wiley and Sons, 2011 | ||||
4. Bazaraa, M. et al.: Nonlinear Programming,, John Wiley and Sons, 2012 | ||||
5. Boyd, S. and Vandeberghe, L.: Convex Optimization. Cambridge: Cambridge University Press, 2004. |
Zařazení předmětu ve studijních programech: | |||||||||
Program | Forma | Obor | Spec. | Typ ukončení | Kredity | Povinnost | St. | Roč. | Semestr |
CŽV | prezenční studium | CZV Základy strojního inženýrství | -- | zá,zk | 6 | Povinný | 1 | 1 | Z |
N-ENG-A | prezenční studium | --- bez specializace | -- | zá,zk | 6 | Povinný | 2 | 2 | Z |
Vysoké učení technické v Brně
Fakulta strojního inženýrství
Technická 2896/2,
616 69 Brno
IČ 00216305
DIČ CZ00216305
+420 541 141 111
+420 726 811 111 – GSM O2
+420 604 071 111 – GSM T-mobile